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COMPUTATIONAL EFFORTS - INTRODUCTION

During the first year of the joint ONR-RR turbine project, computational
efforts have concentrated on the areas of minicomputer-array processor de-
velopment and two-dimensional computer code algorithm development. . This
annual report is intended to be a comprehensive review of the work }erformed
in these areas as well as an analysis as to what the information,@éined
during this year implies for the future direction of the projectsh The
particular areas covered are: 1) a detailed review of the minicomputer-arrav
processor performance and prospects, 2) a summary of the status and importance
of boundary treatments for implicit numerical algorithms, 3) a summary of
the status of grid generation efforts for turbine type geometries and 4) a
review of work done to analyze the application of MacCormack's new implicit
time marching scheme to turbomachinery geometries. In addition a computa-
tional development plan for the next three years is presented, and the
present status of test examples for the two-dimensional analysis ccde is
reviewed.wf\\_’,,/-

The minicomputer~-array processor review largely appeared in an earlier
quarterly report and is repeated here for completeness. The work on implicit
bcundary treatments was presented at a boundary cendition symposium conducted
at NASA Ames Research Center in June 1981 and an expanded version is expected
to be published in the Journal of Computatiénal Physics. The analysis of
the new MacCormack scheme was presented at the AIAA 20th Aerospace Sciences
Meeting in January 1982 as AIAA Paper 82-0063 and has been submitted to the
AIAA Journal for publication. Technical papers reviewing the computer

analysis and the results of the grid generation scheme are under preparation.
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MINICOMPUTER-ARRAY PROCESSOR PERFCRMANCE
sSummary

One important portion of the original ONR-RR turbine project proposal
was the development of a minicomputer-array processor system with sufficient
memory and processing capacity to support the entire computational effort.
Since the success of the computational project largely depended on the
development of this computer system, it was imperative to establish early
on the capacity of the purchased system. This report section reviews the
development of this system and demonstrates that the original system com-
putational speed goals have been met, The original computer concept used
host computer main memory to provide storage for the three-dimensional
problem data matrix, but the widespread introduction of the 64K bit memory
chip has made it possible to specify a backup mass memory system which
greatly expands the storage capacity while reducing its cost.

Historical Perspectives

It is easy to understand why existing general-purpose computers lack
sufficient computing power for three-dimensional computational fluid dynamics
calculations. General-purpose computers are based on a von Neumann type
architecture, in which (a) a single processor is used, (b) a single,
separate nemory is used, and (c) program and data are stored in the same
memory SO that, at least in principle, programs can write other programs.
These principles were formulated at a time when both arithmetic and logic
units (ALU) and memory were expensive (hence only orne of each is used, and

data and programs can share a single address space), but data communication

on internal bus lines was cheap (so that there was little if any penalty in
separating the processor and memory). The large expense of high-performance

machines made it imperative that all machines be general purpose, that is,
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- be able to perform well on a large variety of algorithms. However, these
i; von Neumann architectures are all limited by two bottlenecks: the single-
sequence bottleneck and the memory reference bottleneck.

The single-sequence bottleneck arises because only a single ALU or
processor is incorporated. This restriction makes programming easier
(indeed it has influenced the very nature of virtually all widely used
computer languages), but it forces computations that could in principle
be done simultaneously, to be done one after another. Heroic efforts
have been made to eliminate this bottleneck, and techniques in common use
in high performance computers include simultaneous fetch of next instruc-
tion from memory, and pipelined high-speed arithmetic operators. These
approaches offer higher computation speed at the expense of greater hard-
ware cost and complexity. A few machines have attempted to circumvent
this bottleneck by incorporating two or more ALU's. In most cases such
machines have given disappointing performance when more than four ALU's
have been used, since having n ALU's does not reduce computation time by
a factor of n. This is because techniques for unfolding or ("vectorizing")
algorithms are only partially successful, and the ultimate computational
speed is determined by those instructions that are not done in parallel.

Thus even a relatively innocuous statement that, on a single-sequence

machine, would not take much time, may end up on a vector machine being

Lt b g
el
e

done on one ALU while all the others are idle. Perhaps the most successful

vector machine is the CRAY~1l, and in that case much of the success is due

RARY P+

to the speed of the individual ALU's rather than the parallelism. 1If a
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vectorizing compiler is used, the CRAY-l can routinely achieve 30 MFLOPS

{(million floating-point operations per second), which is considerably below
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its potential of about 150 MFLOPS. In order to get maximum performance
from the CRAY-1l, a prograrmer must be aware of the detailed timing
assumptions in the architecture, and then program so as to use many
functional units concurrently. He must also use the concept of chaining
vector operations, and deal with the fact that the preferred vector length
is 64.

The memory reference bottleneck of von Neumann type computers arises
because a single memory is used. Both instructions and data are fetched
from or written to this memory. Typically the bandwidth of the memory
communication path is relatively small, either because of slow memory
access time or long distance between the memory and the ALU. In addition,
the ALU may have to remain idle until the memory fetch is complete, A
variety of successful techniques has reduced the impact of this bottleneck
in high-performance computers. First of all, the principle of space
locality is used to predict what memory locations will require access
next. In practical problems a large percentage of memory accesses occur
very close to the previous access. Thus if large segments of memory
(pages) are brought into relatively fast memory, in a large majority of
cases the next memory location required will already be in "fast" memory.
The techniques of cache memory and paging are based on this principle
and are very successful, In fact, practical computer systems have a memory
hierarchy with at least four levels--magnetic tape (quite slow, massive

size, used for day-~to-day storage); disk (faster but smaller, used for

most general purpose user-specified storage); cache (much faster, quite

>

O

t;: small, not usually under user control); and ALU registers (very fast, not

r.» many of them, located close by, used for storage of data from one instruction

to the next).
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Minicomputer-Peripheral Arithmetic Processor Concept

The design of a fluid dynamics simulator of sufficiently high power is
quite difficult within the constraints imposed by these bottlenecks, and a
common thread of the unconventional architecture concepts which have been
considered is the attempt to avoid the von Neumann constraints by introducing
parallelism on a modest or massive scale. In the minicomputer-peripheral
arithmetic processor concept, a general purpose minicomputer is used to
manage a memory hierarchy and data flow for a special purpose, high capacity
ALU. A typical minicomputer-peripheral processor layout is illustrated in
Figure 1. Here a general purpose minicomputer with substantial main memory
and large moving head disk drives supports the peripheral arithmetic pro-
cessor. Present computer hardware cost trends indicate that the host mini-
computer should be a 32 bit supermini {Digital Equipment Corporation VAX
11/780 or Perkin Elmer Corporation 3240 for example] with one to two million
bytes of main memory. Smaller and less expensive computers could also serve
as host machines, but the most cost effective choice appears to be a 32 bit
supermini.

The host minicomputer chosen for evaluation was a 32 bit minicomputer
produced by Perkin Elmer, the PE 3242, Important architecture features of
this machine are: 1) a high data rate internal memory bus, up to 10 million
32 bit words/second transfer rate; 2) four DMA (direct memory access) ports,
2.5 million words/sec transfer rate on each port; and 3) a cache memory
system well suited to internal data shuffle operations. The effective
memory access time is 500 ns, the cache cycle time is 200 ns, and the CPU
cycle time is 260 ns. Floating point hardware multiply times are approxi-
mately 1 us for 32 bit single-precision results. A block diagram of the

P.E. 3242 is shown in figure 2.
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£ The peripheral arithmetic processor chosen for evaluation was the

;:7 AP-120B array processor produced by Floating Point Systems, Inc. of Oregon.
Floating Point Systems is the dominant manufacturer of such peripheral
processors, and the AP-120B internal architecture is an excellent example
of the potential computational advantages of abandoning the von Neumann
style architecture. The AP-120B consists of a number of synchronous,
parallel logical units, each operating under stored program control. a
block diagram of the machine is shown in Figure 3.

The parallel structure of the AP-120B allows the overhead of array
indexing, loop counting and data fetching from memory to be performed
simultaneously with arithmetic operations on the data. Stored programs
and data each reside in separate, independently addressable memories to
reduce memory accessing conflicts. Independent floating point multiply and

adder pipelines both allow operations to be initialed everv machine clock

cycle or 167 ns. Address indexing and counting functions are performed by

an independent integer arithmetic unit. For certain computations, such as

v

a fast Fourier Transform, the computation rate is near that of a floating
point multiply and add result every clock cycle or 12 MFLOPS (millions of
floating point operations per second). The floating point data word is
38 bits long.

The AP-120B is connected to a PE3242 DMA port and this processor con-
tains 2048 (2K) words of program storage memory and 32K words of 333 ns
cycle time main data memory. The AP-120B cannot be considered a general
purpose scalar or vector arithmetic processor. Achieving good performance
requires careful, custom hand coding of critical code sections, and the
¢ limited function unit parallelism constrains the type of algorithm that

can effectively use the machine, For example, a memory read instruction
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Z}: may be initiated only every third machine cyvcle so that true vector operations
. like those available on the CDC STAR-205 are not possible. References %o

;{ the floating point register file (data pad X and Y) are not sufficiently

- flexible to overcome this difficulty. To optimize the operation of the

!! AP~120B, it is necessary for the programmer to "“look ahead" and initiate
memory reads prior to the actual time values from data memory are to be

used in a calculation. The burden on the programmer to be cognizant of
machine architecture is not greatly different from that of programmers on

the CRAY or CDC STAR computer.

Numerical Solution Scheme

A In order to properly focus the AP-120B architecture studies, the
system was evaluated for use with a demanding algorithm, in terms of
memory size and complexity, which might be suitable for solving the three-
dimensional, unsteady Reynolds averaged Navier-Stokes equations. The
numerical method is one due to Beam and Warming (1] of NASA Ames Research
Center and may be generally described as an approximate factorization
scheme for vector sets of convection-diffusion equations. This scheme

may be represented as:

(T +1)(+L)(T+ Lz)AUn = rus" (1)

e
Ssr 11
PRt

v,
.

In this representation, I is the identity matrix, Lx' Ly, Lz are
linear, finite difference operators in the x-y-z coordinate directions,
AU" is the change in solution state vector from time step n to time step
n+l, and RHSn is, in effect, the steady~state solution to the Navier-Stokes

equations at time level n. The computational solution proceeds as:
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(2)
(3)
(4)

(5)

where steps 1, 2, and 3 involve calculation of parameters, evaluation of

the RHS, and solution of a large set of sparse, simultaneous, linear

equations.

solved by LU decompos

ition.

The equation set to be solved is block tridiagonal and is

The size of I and other submatrices appearing

is (mxm) where m is the number of vector equations to be solved, m=5 for

ordinary problems. The number of simultaneous equations is m times the

number of finite different nodes along a physical direction.

Details of

the finite difference algorithm are presented in reference (2].

The characterist

ic operation of

set of simultaneous equations, shown

AO Bo CO
Ay B &
o A, B,
0 0
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Here the block matrix elements,

elements depend only

on the solution

this scheme is the solution of a large

below in their banded matrix form,

0 8u,
o su,
o A?z
o | i
Coe1| |%Y3-1
c; | |av,

J
at time level n.

D,
J

(6)

a., Bj' Cj, are themselves mxm whose

is a vector of

length m that depends either on the soluticn at time level ' n or is known

from the previous approximation step.
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When using a von Neumann style computer having a single ALU and a

l;miteﬁ amount of local register storage, the sequence of operations to
find a solution is immaterial, and it may be found by:

1) Computing the RHS function of equation (2) at all node peoints
and storing in main memory.

2) Solving the equation system (2), for each x coordinate line.
This operation requires that matrix coefficients Aj’ Bj and Cj be calculated
and a matrix equation like equation (8) be solved. The equation system is
solved in two sweeps by LU decomposition. The forward sweep appears as:

1

E. = G, = (B, 7
3 3 ( J) (7)
P, =G L (D, - C,F, ,) (8)
73 j b j"i=1

G, = C,E. A, )

-+
B 33-1 3
and the backward sweep would appear as:

A F,
u 3 _ (10)

37 5%5n T
where G-l indicates the invexse of Gj‘ 0f course, for numerical calcu-
lations on a conventional computer, G;l should never be found; rather,
the elements of Ej are solved for directly. With certain types of computer
hardware, it may be advantageous to compute G;l.

3) Solving the matrix ecuations (3) for each y coordinate grid
line as in step 2.

4) Solving the matrix ecuations (4) for each z coordinate grid
line as in step 3 and updating the solution from time level n to time level
n+ l.

A reference problem with a finite difference grid of 50x 50 x 100 will

be considered. At each grid node abcut 20 floating point words must be
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stored for a problem data storage requirement of 5,0 million words. For
purposes of total timing estimates, it was assumed that 500 iterations or
time steps would be required to compute a steady state solution.

It is felt that the solution time per iteration for the Beam and
Warming algorithm is typical of many other algorithms and that the block
tridiagonal matrix structure is typical of many implicit solution schemes.
Thus solution times for this algorithm should be a good guide for hardware
performance on other algorithms.

Two Dimension Test Computation - Host Computer Only

The Beam and Warming algorithm described in the previous section was
first tested on the host minicomputer in a FORTRAN only version., For the
two~-dimensional test solution, the finite difference operator sequence
appears as:

n

(I + Lx)AU* = RHS Step 1 (1)
(I + Ly)AUn = Au* Step 2 (12)
o e ar® (13)

The performance of the present FORTRAN code is illustrated in figure 4

for a finite difference grid line of length 50 nodes. Such grid line re-
quires 1.65 ms/node to compute the RHS function, 0.832 ms/node to compute
the matrix coefficient and 2.17 ms/node to solve the matrix equation. A
test problem of size 50 x 100 nodes would require 36 seconds per time step

and 5 hours for 500 time steps.

Array Processor Test Calculation

The most difficult computaticnal part of the test calculaticn is the

calculation of the coefficients and the matrix equation solution. This

portion of the calculation was moved to the array processor, and the result




11

is illustrated in figure S. The RHS function still requires 1.65 ms/node

to compute, since it was left in the host computer, but the matrix solution
now requires only 0.34 ms/node rather than 2.80 ms. This result is a
speed-up factor of approximately 8.2. An overhead factor of approximately

6 ms/line is incurred. With the RHS function calculated in the host computer,
a time step now requires 20 seconds, and 500 time steps requires 2.7 hours.

A total speed-up factor of 3.2 was achieved with just the coefficient and
matrix equation solution done in the array processor. When the RHS cal-
culation is moved into the AP-léOB, it is estimated that a time step will
require 5.46 seconds, and 500 time steps will require 45 minutes.

AP-120B Architecture Considerations

" Ce e et
b PR P W, WP P

The first test calculations demonstrated both the advantayes and the
restrictions of the AP~120B architecture. These limitations are best

explained by considering a vector operation which occurs often in CFD

t

simulations:
an+l an An An .
U. = U, + a.(U. - U, ) =1 toJd 14
3 3 j i+l j=1 J (14)

A vector of length J is updated using a central difference operator multi-
plied by a variable coefficient. Pigure 6 shows how this operation could
be carried out using multiple, chained pipelines and multiple register
files. With such a configuration one final result, U;Hd',;requiring 2 add
operations and 1 multiply operation, can be oktained each machine clock
cycle, The resulting computation rate is 18 MFLOPS (millions of floating
point operations per second).

The AP-120B has only a single add unit and a single multiply unit and
oniy a limited amount of register £ile storage, 64 words, so that chained

pipeline operation is not possible, The best computation rate that can be
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maintained on the example, equation (10), is 3 multiply operations and 6
add operations every 6 clock cycles. This computation rate is 9 MFLOPS.

The major architecture constraint of the AP-120B is the main data
memory access time. Main data memory, or table RAM, cannot be simultaneously
read from and written to, and only a single word can be read or written per
clock cycle. The example algorithm requires 3 memory references per final
result. For standard speed memory (333 ns cycle time) a memory reference
can be initiated only every third clock cycle so that the example calculation
is memory reference limited. Each final result requires 9 clock cycles for
a computation rate of 2 MFLOPS.

In principle, thq use of interleaved, fast memory (167 ns cycle time)
would allow a 9 MFLOP computation rate to be maintained, but each memory
reference address must be generated through S-Pad operations rather than
through hardware. In practice, it appears that maximum computation rate
that can be maintained is about 4 MFLOPS for general algorithms. Such a
sustained computation rate is comparable to best CDC7600 speeds and is
impressive for a machine whose hardware cost is around $60,000.

An interesting result of the memory reference limitaticn is that the
sequence of operation in the block LU decomposition,” equations (7) throughL
(10), can be critical. In this sequence, the number of temporary results,

Aj for example, scales as mz, where m is the number of conservation equations.
If these coefficients, once calculated, were written to main data memory,

the memory reference limitations would be much more important. The inter-
mediate results, Ej and Fj’ are needed later in the backward sweep,

equation (10), and should be written to table RAM. In more general terms,

effective use of the AP-120B requires the programmer to identify and exploit
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local algorithm parallelism, concurrent calculation of coefficients (Aj,

Bj' Cj) and storage of results (Ej_ and Fj-l) to minimize memory

1

references.

Memory Hierarchy Considerations

2ot ot oot WP SIS WPV SO Y SO R I

The two-dimensional test calculation and architecture considerations
showed that a large amount of AP-120B main data memory is not required to
sustain calculations at the maximum plausible rates. Referring to figure 5,
the overhead time needed to transfer data to and from the AP-120B is small
and can be made negligible. The overhead results mainly from a poor Perkin-
Elmer Floating Point Systems interface (hardware and software), and it
appears that this overhead time can be reduced to less than 5% of computation
time for problems of modest size,

If the AP-120B can work effectively on small amounts of data, problem
data matrix storage can be maintained on a memory hierarchy rather than in
the AP-120B main data memory. The hierarchy considered is to maintain the
full data matrix (data matrix is of 4 to 40 million floating point words)
on a mass storage device at all times; to maintain small sections of the
data matrix, of order 150,000 floating point words, in the host ccmputer
memory for algorithm processing, and to transfer oni& a few thousand words
to the AP-120B data memory for detailed computational tasks. For low cost
systems, the mass storage device would be a moving head disk, while, for
higher performance systems, the storage device would be a semi-conductor
mass memory system.

For either mass storage device, segmentation of the problem matrix on

the memory system is an important consideration; the segmentation considered

D R
"

is shown in figure 7. It is not known yet if this is the optimum segmentation,
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but it is felt to be near optimum for small main memory size. The data
base is arranged such that the smallest memory system addressable element
is a (5x5x5) node block containing Sx5x5x 20 floating point words.
The smallest working set to be in host computer memory is three axial data
planes composed of 300 (5x5x5) sub-blocks.
When an axial data plane set is in memory, the first two operators

may be executed on one axial plane:

B

(T + Lx)AU* (15)

[
[

(I + Ly)AU** = (16)

This axial plane must then be returned to the memory system and a new plane
read in., When 100 axial planes have been processed, an axial grouping of

20 - (5x5x5) blocks is read in and the last operator executed:

(T + LZ)AUn = g** (17)

AT Lt L (18)
One full iteration is completed when 100 sets of this last axial grouping
have been assembled and processed.

This data structure implies a large quantity of data movement per
solution time step since each axial plane must be m;§ed from the memory
system to the host computer memory to the AP-120B back to the host computer
memory and back to the memory system. This process must also be repeated
for each time step, which means that for the reference grid 32 MWords must
be moved for each solution time step. The host computer selected for
evaluation, the Perkin Elmer 3242, is probably unique in a commercially

available minicomputer in that its internal data base structure is capable

of handling this data quantity at high speed. Under worst case conditions,
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the data bus structure can support an aggregate data rate of 10 MWords
per second. Thus the entire data shuffle operation need require only 4
seconds real time if the AP-120B and the memory system can supply and

accept data at an adequate rate.,
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The AP-120B can perform block data transfers at the rate of 1 word
each clock cycle or 6 MWords per second. However, it is expected that
only a small amount of data will be transferred to or from the AP-120B
at any one time, and the I/0 time will be dominated by the overhead time
to initiate a transfer operation. This overhead time is estimated to be
about 2 ms per transfer for a total overhead time of 25 seconds per time
step on the 50 x 50 x 100 reference grid.

As can be seen from these simple considerations, the overhead time
in setting up the AP-120B data transfers is 5 times larger than the host
data transfer time., However, the overhead time dces imply a minimum vector
length, which does depend on the numerical algorithm complexity, below
which no gain is made by using the AP. For the test algorithm, equation

(14) and a 2 ms overhead, a minimum vector length of about 300 is required

if the host computer can perform floating point operations in an average
time of 2 us. A 2 Us average computation time is quite generous for the

host computer considered.

TAT L

This type of simple operation count, however, seriously overestimates

roRAat
A

the importance of AP~120B overhead since computational fluid dynamics

Y 7
-

problems are characterized by the fact that coefficient calculations, aj

DA

in equation (l14), are complex algebraic functions of the current solution

vector, For example, it appears that the minimum time to perform the block

T oy T
' g .

-

tridiagonal inversion is about 0.2 ms per node for the two-dimensional case.
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For the overhead to be 10% of the calculation time for just the block in-
version regquires a vector length of 100. If the calculation time for the
coefficients Aj' Bj’ Cj is also considered, the vector length for 10% over-
head time falls to 50, and it falls to 25 if the RHS calculation is con-
sidered. For three-dimensional calculations, the minimum vector length for
10% overhead is as low as 5 or 10, It is also to be remembered that the
10% overhead time is about 1% of the time required to do the calculation

on the host computer.

The introduction of 64K RAM VLSI memory chips has made the concept of
large, fast, inexpensive backup memory systems very attractive. Several
vendors now supply memory systems made up from these chips complete with
power supplies, error correction and custom interfacing designed as moving
or fixed head disk replacements. A particularly interesting system is the
memory system 3000 sold by Motorola Inc. which contains a maximum of 32M
Bytes in a single chassis. A block diagram of this system is shown in
figure 8.

The 64K RAM chips are arranged on 16 memory cards which are individually

connected to an internal memory bus. The memory address controlled (ACC)

has parallel access to all 16 memory cards, thus making available on the

user bus 16 72-bit words each 500 ns cycle. In block transfer mode, this

structure results in a 64M Bytes per second transfer rate. In random access
mode, the data transfer rate is 16M Bytes per second. The maximum transfer
k" of the host computer interface channel is 10M Bytes per seccnd so that the
P'i Motorola memory system can supply data in the random access mode faster

pi‘ than the host computer can accept it.

An overhead or setup time will be required to initiate a transfer data

between the memory system and the host computer, but the total overhead
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time should be small compared to the AP-120B overhead time. Memory system
read/write requests will be initiated for fewer times than I/O setups for
the AP since the memory system will be used to store the data blocks illus-
trated in figure 6. These blocks are broken dewn to individual grid lines
to transfer to the AP,

Hardware Cost Estimate

The hardware costs for the host computer with 2M Bytes main memory, a
300M Byte moving head disk and DMAI interfaces is $200,000. The hardware
cost for AP-120B with 32K words main data memory (333 ns cycle time) and
P.E. 3242 interface is $65,000, The Motorola memory system will cost
approximately $90,000 for 16M Bytes storage and perhaps $20,000 for the
custom interface required., The total hardware cost for a minimal system
is $375,000.

Price--Performance Estimate for Reference Grid

The two-dimensional test codes allow a rough estimate of the system
performance on the reference grid problem. The AP-120B calculation time
without consideration for overhead time is estimated to be 0.4 ms per mode,
based on the two-dimensional simulations, which yields a calculation time
of 41 hours., Assuming a 10% overhead time gives a total computation time
of 45 hours. When the two-dimensional test codes were constructed, the
memory reference limitations of the AP-120B were not properly understood,
and it is estimated that the calculation time can be reduced by a factor
of two. This saving results from not storing the coefficients, A,, B., Cj
in equations (6) through (10) in main data memory. The estimated computation

time on the reference grid is then 23 hours. The average computation rate

is approximately 3 MPFLOPS with a total hardware cost of $265,000,

- C— - . e P PP T W S (PN W WP U LIS G Gy 444.1_-.11
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A minimum cost system would replace the semiconductor memory system
with the moving head disk which increases the total computation time by
introducing the average disk seek time and slower data transfer rate into
the calculation. This overhead time is roughly estimated to 24 hours and
is not easily overlapped with AP-120B calculation time. A total computation
of 47 hours is estimated when storing the solution data matrix on disk,

A maximum performance system would use the P,E. 3242 base stracture
to drive 4 AP-120B units, Since all calculations along grid lines can be
made independent, the total computation time can be reduced by a factor of
four. The total computation time would then be about 6 hours. The average
computation rate would be about 12 MFLOPS with a total hardware cost of
about $570,000. Thé spectrum of price-performance is illustrated in
figure 9.

Analysis and Discussion

One major factor leading to exceptional performance of the minicomputer-
array processor combination is a good match between operating speeds of
different system devices when the mass memory system uses the 64K bit
MOS memory chips. The critical weakness of present supercomputers is in main
data memory costs and communication strategies. In these machines main
memory is made up of fast but expensive ECL (emitted coupled logic) chips
which still require complex communication strategies to generate enough
memory access bandwidth to keep pace with arithmetic processing. At the
reduced pipeline speeds of the AP-120B, low cost MOS memory chips with
simple communication strategies easily provide the needed memorv access
bandwidth. The balanced minicomputer system cost is reduced to the point
that dedicated systems can provide larger memory sizes than available

supercomputers.
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PROBLEM DATA MATRIX STORAGE EXAMPLE
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(EACH BLOCK BROKEN

/ /5 NODES DEEP UP INTO 100 (5 x5x5)
SUB-BLOCKS )

50 NODES

Figure 7
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BOUNDARY TREATMENTS FOR IMPLICIT SOLUTIONS TO EULER AND NAVIER-STOKES EQUATICNS

Summarz

The importance of boundary treatments for implicit algorithms was

greatly underappreciated until recent work by Yee, Beam and Warming [4]

v
T
[

» ‘. -

appeared. This work used a modal stability analysis originated by Kriess

S O
.

[S] to analyze the effect of several different boundary treatments on

‘v

algorithm stability. This theory strictly applied only to linear equations

with constant coefficient in one space dimension, and a computational study

=
[
Lo

was conducted to test its relevance to realistic Euler or Navier-Stokes
computations. It was found that for both explicit and implicit boundary
treatments, it was possible to compute solutions with time steps 50 to

100 times explicit time limits while retaining the ability to choose rather
arbitrary initial conditions. An even more important computation result
which was observed is that while large time step sizes may be used, the
largest convergence rates occur at relatively small time step sizes. For
the two-dimensional test cases considered, the best time steps were of
order 10 times the explicit limits. Since the present implicit codes
require more than 10 times the operations per time siep, the convergence

rates of the implicit codes must be improved before they can be considered

superior to the explicit algorithms.
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BOUNDARY TREATMENTS FOR IMPLICIT SOLUTIONS
TO EULER AND NAVIER-STOKES EQUATIONS*

W. T. Thompkins, Jr.

R. H, Bush
Massachusetts Institute of Technology

INTRODUCTION

Implicit time marching schemes like those of Beam and Warming [1],
Briley and McDonald [2], and MacCormack (1980) (3] generally have not been
as robust as would be expected from a stability analysis for the pure initial
value problem. Recently, Yee, Beam and Warming [i] illustrated that a more
general stability analysis, which includes the effect of boundary conditions,
may explain some of the seemingly anomalous behavior of these schemes. The
major theoretical basis for tLis type of modal stability analysis was
established in a series of papers by Kriess [5,6], Osher (7,8] and
Gustafsson et al ([3].

Yee as well as Gustafsson and Oliger [10] considered the effect of
inflow/outflow boundary condition formulations on the stability of a class
of numerical schemes to solve the Euler equations in one-space dimension.

The characteristic feature of a subsonic inflow/outflow boundary is that

a priori boundary values may be specified for only some problem variables
while remaining boundary values must be determined as part of the solution
process, Yee demonstrated a rather large disparity in stability bounds
between the use of explicit or implicit extrapolation procedures and in
general cdemonstrated that implicit extrapolation procedures had the least

restrictive stability bounds. The intent of this work is to explore com-

putationally the implication of this work for several two-dimensional Euler

and Navier-Stokes simulations,

*This work was partially supported by NASA Lewis Research Center under
NASA Grant NAG 3-9,

R . At i B




b A A bk
I St i

. g s
e

v
’

v x"11.. '.4"'.. ¥

4

(i M) A

A ey
-0

e

hat o0 0 40 SELANE B 0
ey e Y

Y vr
PRI
. o

Las an s

form as

where

and

-
11

t

31

NUMERICAL PROCEDURES

-B-t-+-é;+-3-.-=$+5—;.
= fo\ E = rpu ) F = fpv )
2
pu Pu + p puv
pv ouv OV2'+P
Et umt+p) Lv(Et+p)J
L / \ J
= (o ) S = fo
T
e Xy
T T
Xy Yy
f‘4 S4
) \ J
=o(e + % (u2 + vz))
_ Ju v
= (A + 2u) 3x+x3y
_ {d%u , ov .
‘“[ay"ax]
_ v ou
(A + 2yu) 3y + lax
2
_ -1 -1 3a
=uT .t vrxy+ ,UPr (vy - 1) S
2
_ L5l -1 3a
= uTxy4-vay + qPr (y 1) 5y
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The two-dimensional Navier-Stokes equations may be written in vector

(1)




o 2

The strong conservation law form may be retained under a general
coordinate mapping as illustrated in Viviand [1l]. All computations to
be described were conducted in a mapped computational domain but numerical
and boundary condition procedures will be described in the simple two-
dimensional geometry shown in figure 1 for simplicity.

A 1979 paper by Beam and Warming [igj outlined a solution scheme
for systems of equations of the form (l) which includes most numerical
schemes for which the modal boundary condition analysis has been conducted.
This scheme uses the well developed methods for ordinary differential
equations as a guide to developing numerical methods for partial differential
equations, The scheme presented combines Linear Multistep Methods, local
linearization, approximate factorization and One Leg methods. The scheme,
a generalization of the scheme presented in reference {l), solves for a
variable O(E)u which is equivalent to Au" in the class of schemes represented
by the earlier paper. The earlier scheme is somewhat easier to understand
as AU? is just the change in the solution from time level n to level n+1,
while p(E)u is a more general time differencing formula.

The solution schemes chosen are implemented as:

X (I + L; )Au* = RHS" : (2)
. (T + L’:‘)Aun = AU" (3)
™t o- gt s ad® (4)

where

1% 85 MEARICICARIDS
e L

n , . . . )

RHS is very nearlv the finite difference approximation to the steady
state equations, and

Lx and Ly are linearized finite difference operators representing a

particular time and spatial differencing scheme.
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Full details of these operators are contained in Beam and Warming
[1]. If the spatial differencing is taken to be centered, the computational

form of either equation (2) or (3) appears at each interior point as:

n n n n n n n
. Au, + B, .+ C. Au, =D,
Ay Ul_l 13l AUl cl Ul+l Dl (5)
where Ai, Bi, and Ci are 4x 4 matrices, known at time level n, Di is

the right-hand side vector at node point i known at time level n, and AU;‘
is the unknown vector at node point i, The boundary points will be assumed

to involve only the nearest two points in the x direction.

n n n n
Ao AUO + BO‘SUI + CO A02 = DO (6)
The restriction to extrapolation along grid lines, actually transformed
grid lines, is necessary to maintain the block tridiagonal form
and avoids possible instabilities due to skewed extrapolation,
see Abarbanel and Murman [13]. Extrapolation procedures
using more than the two nearest neighbors can also be included in the
process to be described,
The full matrix equation appears as:
Ao Bo C0 0 0 e o] AUO DO
Al Bl C1 0 0 vee 0 AUl Dl
°© R By G 0 .. 0 AU, | P (7)
0
0 0 AUn_2 Dn-2
: : Aa-1 Bp-1 Cpe1 | (%Y1 Ph-1
0 0 A B o AU D
n n n n n

and will reduce to tridiagonal form if the first and nth equations are sub-

. : t .
stituted into the second and the n-1 B equations,

I
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' ' '
Bl C1 0 coe 0 AUl Dl
A2 32 C2 vee 0 AUZ D2
o L] L]
O =

. Ah-2 Bpo2 Che2 A5 Dp-2

) L} L}
0 ces o a', B Aoy D,

where for example
] _ A—]_
By =By =~ AR, By .

This cumbersome development allows us to show clearly how a large variety

(8)

of explicit or implicit boundary forms can be included without difficulty.

BOUNDARY TREATMENTS
Inflow/Outflow Boundary

The finite difference algorithms studied usually require more
boundary values than are required for the partial differential equations
which they simulate. These extra numerical boundary conditicns cannot be
set arbitrarily and are usually determined through an.extrapolation pro-
cedure, These extrapolation procedures may either be explicit, that is
boundary values needed at a new time are determined uniquely from the cld

time level solution, or implicit, that is boundary values are determined

as part of the new time level solution., The analytical boundary conditions

or the extrapolation quantities are usually not conservation wvariables but

primitive variables and a local linearization is usually required as part

of defining the extrapolation procedure,
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Consider, for example, an implicit, subsonic outflow boundary at
which the local static pressure is specified as a boundary condition, and
all other variables are to be determined by extrapolation. Figure 1 shows

a typical computational grid and defines the subscripts used,

9+} = Pfl. ; given (9)
L] i,]
n+l n+l n+l
p p p
implicit
pu =2 |pu - lpu space (10)
extrapolation
ov), . \J ov). .
i,3 P%i,5-1 i, j=-2

In order to complete the boundary formulation, all eguations must be ex-
pressed in delta form and in terms of conservation variables. For the

total internal,energy this may be done through its definition:

B Dz e "o ()

P 1 ((Du)2 (pv)2

Since the relations between conservation variables are nonlinear, some
linearization step will be necessary before the boundary condition formulation
may be used, We choose to introduce our linearization step here as:

n

AE = (E n+l En) = (‘lfl) Ap - % (uz + VZ:I Ao + unA(Qu)

+ VPAlov) +  (Audv, Bu?, AVP, Bpdu, Apdv) (12)
If terms of order AuAv are neglected, the error is equivalent to the
linearization error of the interior point scheme. We may express the

transformation from boundary variables to conservation variables as:

bu, o= {80 = [ 1 o o o a0 ) =N, .Aw,
i,] i,3 1,3
Apu 0 1 0 0 Aou (13)
Aov 0 . 0 1l 0] Aov
2 2
-(u"+v") n n 1
\AEt‘, | 3 u v -1 AP‘
1,)
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We will in general denote transformation from conservative to primitive
variables as

Aw, . =T, .AU, . (14)
i,] 1, 1,3

The extrapolation conditions for Awi 3 are:
14

w, .= [ ap) ={2 0o o o] ap) + (-1 o o olfae)
i,Jd
Apu 0] 2 0 0l |Apu 0 -1 0 0)|Apu
(15)
Apv 0o 0 2 offsev 0 0 -1 offspv
tAPJi’J o 0 o oJLAP‘i'J_l L0 0 o0 0 LAPJJ‘.,J-2
or
Wo, o = Paar Vi, 01 7 Pae2 ¥y, 022 (16)

The final equations relating the boundary conservation variables and the

interior conservation variables are:

n n n
= N, . . + . .
AUi,J Nl,J [PJ-ITL,J-IAUL,J-I PJ-ZTL,J-IAUL,J-2 (17
or
n n
= +

BU; 5= 6i,5-1805 ,5-1 * By 522895 52 (18)
With the definition of PJ—l and PJ_2 given in equation (15), Ti,J-l and
T. are identityv matrices.

i,J=-2

An explicit outflow boundary treatment was constructed using:

Pn+1 = p" ; given
+1 n
)" p
lou - ou (19)
v i,J pv i,J=-1
= 0,

and setting Gi,J-l = Hi,J-z =

LRI G VLT Sy Sy H Py A WP S S Y b 2 2 k3 = Lo 2 A - Ao a0 & Pe P’y
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In forming equation (10), we choose to extrapolate the local momentum
flux rather than a specific primitive or characteristic variable; choice of
other extrapolation variables would alter only the transformation matrix,
Ti,j' Extrapolation of the momentum flux is somewhat arbitrary, but its
choice did not affect the accuracy of the computational results to be

presented.

Solid wWall Boundary Procedures
The boundary treatment procedures illustrated for inflow/outflow
boundary are easily extended to cover solid walls in either inviscid or

viscous flow situations. Here,

6, g = (ap ) = [ y/T o/T O o) ap)
Apu Yu/T pu/T 0 0 AT
Apv Yv/T pv/T 0 sq|| Aq (20)
o (PP e ol
or
Au_ . =N AW (21)

0,5 = Yo,5™0, 3
where q is the velocity parallel to the wall and S is the wall slope., For
the inviscid flow examples 3P/dy, 3T/dy and 3U/3y are set equal to zero,
while, for the viscous flow examples v, u, and JT/Jdy.are:-set equal to zero
and 9P/dy is equal to 4/3 u(a/ayz)(v). All derivatives are evaluated by
one-sided finite difference formulas.

As indicated by Buggeln, Briley and McDonald [14], an ADI type pro-
cedure requires boundary conditions for the intermediate step. Usually the
intermediate step was in the "y" direction and the boundary conditions were
applied as if the intermediate results were physical quantities, that is,
the boundary conditions of equation (20) were applied to the gquantities

AU* of equation (2).

W . P OV, W P W N UL ST WP G S P SE T G S Pl P PR SO W S




Explicit wall boundary treatments are generated by applying the
primitive variable form of equation (20) and forcing the correction matrices

to be zero.
NUMERICAL RESULTS

Three geometries were selected for detailed study: an inviscid super-
sonic diffuser with weak oblique shock, supersonic in - supersonic out; an
inviscid supersonic diffuser with a strong normal shock, supersonic in -
subsonic out, and a viscous supersonic diffuser with weak obligue shock
illustrating a shock-boundary layer interaction. Sketches of the geometries
and ideal solutions are shown in figures 2, 3 and 4. Solutions for each
geometry were run to steady state for a range of time step sizes. For con-
venience time step sizes are reported in terms of x and y CFL numbers:

At (u + c)i j\

(CFLx) = maximum " - {22)
\ l’J J
rAt(v + c)i )

(CFL) = maximum iy eJ (23)
Y L irj J

The time step size was uniform over each calculation which results in
non-uniform CFLx and CFLy numbers. The maximum value of each is reported.
Sample convergence history plots are shown in figure 5 which shows the log

of the value of the point maximum steady state residual

dE JdR . OF 38
SSR=§;(---3—X+§;-W (24)

plotted against the iteration number. A solution was not termed stable
unless the residual converged to the machine accuracy, about 1.x10-6. all

calculations used a 32 bit floating point word size.
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E? Each geometry calculation was run with fully explicit extrapolations,
ii AU=0, and with fully implicit extrapolations, and the results summarized
;g in Table 1. The most interesting of these results are shown in figure 5.
E: At a time step size corresponding to a CFLx number of 15 convergence was
Ei rapid and very nearly monotonic in time. At smaller time step sizes, the

e convergence was slower but nearly monotonic. At a CFLx of 45 convergence
: rates initially appeared to be faster than for a CFLx of 15, but the final
residual values oscillated significantly about its minimum value. At a
CFLx of 90, the convergence rate was substantially slower than at a CFLx
of 15, and at larger CFLx values the solution diverged.

The results for the strong shock diffuser can reasonably be compared
to those of Yee, Beam and Warming [4]. They reported a CFL number stability
limit between 10 and 20, while we found stability limits between 90 and 150.

Thus the analysis in one-space dimension does appear to provide a sufficient

condition for stability, but it may not provide a close approximation to the
stability limit, However, it is essential to emphasize that the largest
convergence rates were observed at time steps corresponding to CFL numbers
of order 10 and that only a marginal computational time advantage for the
implicit boundary formulations was observed., .
The results for the shock-boundary layer calculation are very inter-

esting, but they demonstrate a substantial computational advantage for the

implicit solid wall conditions, not for the inflow/outflow extrapolation.

Here the stability boundary and the best convergence rates were observed at

r time step sizes corresponding to CFLx numbers of 5 to 10. When using the
implicit wall conditions, the algorithm stability appeared to be independent
of grid spacing in the normal direction as might be hoped. When using the
explicit wall condition, the algorithm stability was limited to a CFLy number

of about 500.
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CONCLUSIONS AND DISCUSSION

While it is difficult to generalize from only a few test examples, it
is apparent that a better appreciation of the role boundary treatments play
in implicit algorithms has allowed the development of far more robust Beam
and Warming type solvers. For both explicit and implicit boundary treatments,
we were able to accurately compute solutions with time steps 50 to 100 times
explicit time limits while retaining the ability to choose rather arbitrary
initial conditions. 1In many cases, our limiting time steps for the two-
dimensional test problems were in fact larger than the limit which a one-
dimensional analyvsis would suggest.

The most important computational result we observed was that while an
improved appreciation of boundary treatments did allow very large time step
sizes to be used, the largest convergence rates to steady state were observed
at relatively small time step sizes. For the two-dimensional test problems,
the best CFLx numbers were of order 10, not of order 100. One-dimensional
test examples showed no such convergence rate behavior. Presently unpublished
analysis by Abarbanel, Dwover and Gottlieb [15] has linked this behavior to
the approximate factorization form of equations 2 and 3. This effect now
seems to be setting the time step sizes for our viscqus flow computations

and new work should focus on methods for overcoming this limitation,
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Figure 1, Grid Numbering Scheme for Boundary Condition
Formulation

Figure 2, Computational Grid for Weak Shock Diffuser Calculations
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Figure 4. Combutational Grid for Shock-Boundary Layer Computation
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GRID GENERATION EXPERIENCE
Summary

One of the most difficult tasks to be performed as part of accurate
computations for turbine blade geometries is grid generation. As part of
our efforts in grid generation, we have constructed a coordinate generating
scheme [BOGG] based on elliptic¢ (Poisson) equation solutions which seem
attractive for internal flow calculations. These coordinate systems are either
orthogonal at boundaries or may have any specified angle, are periodic upstream
and downstream of blade rows, and may have arbitrary, user-specified spacing
near boundaries, This grid system does not correct the problem of highly
sheared grids and does not provide adequate grid resolution in the far field.

Analysis of the calculational results indicates that the present use of the

strong conservational law Navier-Stokes form and central finite differencing
is the problem rather than the grid systems. Investigations are continuing
to determine if simple, sheared grid systems may be used in place of the more

complex BOGG grids.

BOGG -~ Introduction

One of the major problems in developing an effidient numerical calcu-
lational scheme is the choice of a proper coordinate system, capable of
transforming a complicated physical domain into a rectangular, evenly spaced
calculational domain., In the viscous flow case, the coordinate system rust
give a high resolution region close to solid boundaries in order to capture
the boundary laver, and its lines should be normal to this boundary.
Especially demanding is the grid development for transonic compressor and
turbine cascades due to their complicated shape, the complex flow structure

and the presence of periodic boundaries, The practical problem usually

. .
. & b TP W SN S P TPy GG W Y TEPY DT WP WA NP0 S SR I SIS N |




47

starts with a given grid point distribution along the boundaries coupled
with some desired properties of the coordinate lines at the boundaries,

and seeks a one-to-one mapping of the points from the physical domain into
the computational domain, In recent studies, many new methods of numerical

coordinate system generation have been developed ([l1]-[7]). Most of these

methods are based on the solution of Poisson equations with Dirichlet
boundary conditions, giving unique and continuocusly differentiable trans-

4ii formation functions. Only few of them, however, provide a direct control

3

s of the line direction and spacing, Thomas [3] provides analytical ex-

: pressions for the controlling functions, but this method fails to produce

fq the desired results in all but the simplest cases, Sorenson and Steger [4]
l; developed an effective method of controlling the spacing and angles at

53 boundaries for O- and C-type grid systems. Warsi and Thompson [6] introduced
E‘ a non-iterative method for the numerical generation of orthogonal curvilinear

coordinates for plane annular regions between two smooth closed curves,

.

"y . ”
L L T e

Although most of these methods are adequate for some problems, they are not
fully suitable for grid generation in internal flow calculations, The grid

generation method for this type of problem has to provide a positive control

ol
.

of the grid lines at all boundaries, give the required spacing, generate

& coordinate lines without excessive skewness while being simple, fast and

3 generally applicable,

:_ BOGG uses a system of grid generating elliptic (Poisson) equations

=

;S similar to those in [3], but it introduces a simple and effective iteration
ﬂ method of controlling the coordinate line angles at all boundaries, Coor-
;i dinate systems were developed for different inviscid and viscous internal

E! flow problems and used with success in an implicit two-dimensional numerical

scheme [11].
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BOGG Basic Formulation

The present method seeks a coordinate system transform

£E=2E&(x,y) and n = n(x, y)

as a solution of the Poisson eguations

Exx + Eyy P(E, )

(1)

Nex ¥ nyy

(g, n)
where x, y are the Cartesian coordinates in the physical domain 1, and

€ , n are rectangular coordinates in the calculational domain (Fig. 1).

The coordinate lines & = const were in most of the cases aligned streamwise
and included solid surfaces; the coordinate lines N =const were usually
normal to the streamwise direction at the boundaries, Equation (1) is
subject to the Dirichlet boundary conditions £b==5b(x,y) and nb==nb(x,y).
The right-hand side functions P and Q control the spacing of the & and n
lines inside the domain {}. Since the values of £ and n are fixed on the
boundary, a change in spacing within § will produce a change of the angle
at which the £ and n lines intersect the boundary. The correct value of

P and Q is not known a priori, so that an iterative procedure over the
system (1) is necessary to find P and Q.

The effect of the functions P(£,n) and Q(&, n) én the resulting
coordinate system can be seen by comparing the solution of (1) with the
corresponding homogeneous system

€. * &

oYy (2)

+ =
ﬂxx r]YY °

[]
o

Let £,Nn be the solution of (1) and £*, n* the solution of (2), subject

to the same boundary conditions as (1), Then, in a subregion D of {, a

e minamnidion. [V | [ TR Y Sy VUL YU S P PP VRN S ST SN SN Sy SN SR S, § L CWPE YO




Gt

f'd'f'.
.

.
v ]
\ B

W

et B SCHEONE AN S e NN

rf-.

- e T . T A T Ty T W oW T T, T W oW Y. e o e - 5 = T .

49

negative P(E,m, n) will cause a line § =% =const to move closer to the line
E’m than the line E*-—' 2, since £ and n are subharmonic on D. Similarly, a
negative Q( §&, nm) will move a line n=4%=const closer to the line N, than
the line n*= L. Positive values of P and Q have the opposite effect on
the £ and n lines. If the curve E=€m is now a branch cut in D, this branch
cut will move in the direction of increasing & for a positive P(Em, nd.
The magnitude of P and Q determine the magnitude of the movement of the
coordinate lines; the sign of P and QO determine the direction of this movement,

The situation at a boundary n=const= nmin is shown.in Fig., 2a. Here the
position of the £ =const line on the boundary is fixed by the boundary con-
dition €=Eb(x,y) . A negative increment in P( g'nmin) will cause the line
£ to move inside of I in the direction of increasing §. This movement will
decrease the angle Y between the line £ = const and the tangent E to the
boundary. A positive increment in P( &, nmin) will cause a movement of the
£ line in opposite direction. A proper value of P can therefore give the
desired angle Y=8, 0<B8<T, Here it should be remembered, however, that
the influence of P( &, nmin) is not limited to the line £ but affects the
coordinate lines in the entire region. In most of the practical cases the
angle forcing requirement is not limited to one point but extends at least
over some part of the boundary N=const. This means that P(f£ ,n) has to be
found for all points simultaneously rather than by pointwise calculation.

Fig. 2b shows the analogous case of the influence of Q on n=const
lines at the boundary § = const = gnax' Here a positive increment of

Q(Emax ,N) will decrease the angle Y.
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For practical calculations the inverse relationship

x(gﬂ'l)

X
(3)

y =y(&,n)

is needed., The inverse form of the system (l) is (see for example (1])

2
-2 = -J3%(Px, +
or.xEE Bxgn-kyxnn J°( xg an)
5 (4)
= 2 = -J°(Py, +
Wpp = 2Byen + ¥y = ~T (B +Qy)
where
o = x2-+ v2
n |

B = xxe + vy

J = xgyn-x yE==Jacobian of the transform

n

It is of advantage to define new spacing controlling functions as

2 2
-p =0 L
¢=P 3 V=0 Y (5)

The values of the functions ¢ and Y are several orders of magnitude
smaller than P and Q. The above
explanation for the effect of P and ¢ on the grid iines applies to ¢ and

Y without restrictions since Jz/a'>0 and J2/Y2>O. With (5), the equations

p-—
Li (4) become finally
- OXpp = 2BX,._ +YX__ = (0dx, + YUX )
= gg ~ 2B%gn * Y¥pyn = (a0%, n
. (6)
4
- a -2 + = (o + Yy )
F.‘ Yee Bygn Y¥on (<1>yS VY,
-
o subject to the boundary conditions x=x_(5,n) vy=y_(£,n) . Once?
i; and U are chosen, the system (6) can be solved using an appropriate numerical
[ @
g! method.
¢
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o Choice of ¢ and V¥

. The previous discussion illustrates that the angle Y at the boundaries
is determined by the function ¢ at N = constant boundaries, and the function
Y at § = constant boundaries, Starting from initial values of ¢ and ¥, the

controlling functions have to be adjusted in an iterative manner to give

L. the required angles (B) between the coordinate line and the boundary.
[ In general the left boundary is defined by £==Emin, the right boundary
s by &= Emax' and the lower and upper boundaries by n= nmin and n= nmax

respectively., Solid walls are generally located on part or all of the range

. E=¢ . to at n=n_. and n= . Y i £
- =& in Emax n=n :n n=n .. The most common requirement for
[ this type of grid is that the coordinate lines are orthogonal to the

boundaries (B =1/2, 00=0)., Specification of an angular deviation from

orthogonality is, however, allowed (i.,e., the angle O is specified non-zero).

The following discussion applies both to orthogonal and non-orthogonal grid
line intersections at the boundaries.
The procedure necessary to obtain the desired grid angle, B, at the

lower boundary will now be discussed. The nomenclature used in the following

:}‘ section is as defined in Fig. 2a. It is assumed in this correction procedure
of
-;_ that any change in the forcing function ¢ will have oénly a localized effect
e
et on the coordinate lines,
It was stated in the previous discussion that decrementing the forcing
‘ function ¢ (i.e. P) will reduce the angle Y. Similarly incrementing ¢ will
2
F! increase the angle Y, The following conditions therefore apply.
3 Y > 8 we require A¢ < 0O
:; R (7)
o Y < B we require Ad >0
q
&
.~
-
-
[
pr=
r o
p -
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Choice of an incremental function to satisfy these criteria will force the
grid lines to the required orientation., The forcing function ¢ is modified
between iteration counts £ and 2+ 1 using the equation

2+1 2 2
SE ) =g I+ A0 (8)

The correction factor, A¢l, used in this computation is given by

L _ -sin(Y- B)
A

Ad (A>1) (9

This expression satisfies the movement criteria expressed in (7). The damping
factor A(>1.0) is introduced to control iteration stability.

A similar analysis at the upper boundary leads to the following
iteration sequence:

2 L sin(y - 8)

OCE M) T = eE, T « RIS (10)

The value of ¢ inside the domain ) is obtained by linear interpolation along

a line & = constant.

E,m = d(E, n_. ) + |0 ) - (& ) * ” min (11)
P ’ "min *Mmax *Thin’ | |7 -1
max min
At the boundary £==Emax, Y is determined by the sequence
L+l 2 sin(y-B)
W‘Emax /) =W N . (12) :
and at £= Emin' |
2+1 _ L _ sin(y-8) .
W(Emin. n) =W M 5 (13)

The angles used in equation (12) are defined in Fig, 2b., Between these

boundaries J is calculated along a line n=const kty linear interpolation.

(14)

(’ “min
g

w(a ,n) = w(gmin'n) + W(Emaxrn) - W(Eminm)} kgma‘( ‘-'minJ‘
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If no specific requirement is enforced on the grid intersection angles at
any boundary, the forcing function remains constant throughout the iteration
procedure.

The above correction procedures require evaluation of the sine of
the angqular error. This sine can be expanded (on the lower and upper

boundaries) to:

sin(Y-B) sin[(Y+8) - (B+68)]

sin(y+8) cos(B+8) - cos(y+0) sin(B+0) (15)
where the angles are defined in Fig. 2a for the lower boundary. An angular
deviation (&) from orthogonality may be specified so the above equation is
rewritten in terms of o, Y and 0 as:

sin(y-8) = -sin(y+8) sin{(8-0) - cos(Y+8) cos(8-q)
The angle, 6-a, is constant throughout the iteration procedure and is there-
fore only calculated once. The sine and cosine of the angle between the
£ = constant line and the x-axis (Y+9) are evaluated using the equations:

y(E:ﬂp) - y(E;ﬁp_l)

/[:(E,np) -x(Ernp_l)]2+ [y(i,np) - y(E:np_l)]z

X(E,ﬂp) - x(E,np_l)

/[x(E,np) - x(éj,np_l)]2 + [y(ﬁ,np) - y(Err;p_l)]z

sin(y+89) =

(16)

cos (Y+6)

where

n n on the lower boundary

P min+1
np = hnax on the upper boundary

On the left and right boundaries, the sine of the angular error is expressed

as:
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sin(y-8) sin{(y-8) - (8~6)]

sin(y-9) cos(B-8) - cos(Y-9) sin(B~9)

sin(y-9) sin(8+a) - cos(y-0) cos(6+a) (17)

The angle, 8+a, is again constant throughout the iteration procedure, and

VEOMONNOn A= D
.'.‘4' - < -"l"".."-
(]

the sine and cosine of the angle between the n=constant line and the x-axis

(y=8) are evaluated using the equations

-(y(€_m = y(§__ ,n)

sin(y-90) = (18)
2 2
Y (x(Em) -x(E_m) T (v(egim) = v(&__; om)
x(E_,m) - x(E__.,n)
cos(y=-6) = 2 b (19)
2 2
Vg m = x(g )T+ (g - v ) om)
where
Ep = gmin4-l on the left boundary
£p = Emax on the right boundary

BOGG Iteration Procedures

Once the functions ¢ and Y are established the system of Poisson

equations (6) can be numerically solved using finite difference methods.
The scheme selected was successive line over relaxation (SLOR), SLOR is
first applied along £ lines and then n lines for a nﬁmber of iterations.,
The forcing functions are then corrected and the procedure repeated.

The over-relaxation factors used in the SLOR calculations were
generally taken as 1.15 for evaluation along & lines and 1.05 along n lines.
The damping factors applied to the forcing function corrections [Eags. (9),
(10), (12), and (13)] were generally the same and had values in the range

1l to 5,

= ]
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BOGG Calculation Examples

The simplest type of coordinate system was that of the diffuser, which
consists of an upstream boundary £ =0, downstream boundaxy'£=imax, solid
wall boundary at n=0 and either solid wall or symmetry line atrF=jmax.
The lines £ = const were required to be normal to the n boundaries; there was
no specific requirement for the n=const lines at the § boundaries in the
inviscid case. The viscous grid has geometric point distribution along
the £ lines allowing proper boundary layer resolution. The spacing in the
¢ direction is constant. The maximum error criteria for O was 0.2°, The
resulting grid systems can be seen in Figs. 3, 4 and 5,

Compressor cascades are difficult geometries for developing coordinate
systems suitable for efficient viscous and non-viscous calculations., The
blade shapes chosen for examples were designed by Tong (l0] with help of an
inverse numerical code. The physical domain consisted of the region between
the two blades and an upstream and downstream region bounded by blade chord
extension lines. Along these lines, the periodic boundary conditions have
to be applied, requiring the same point distribution at the upper and lower
boundary upstream and downstream of the blade, respectively. The upstream
(£ =0) and downstream (£ =40) boundaries were located one chord length from
the leading and trailing edge, respectively. The viscous grid has the first

and last n lines densely packed (geometric distribution) in order to capture

the boundary layer; the remaining n lines are uniformly spaced. In the non-

L‘ viscous grid all the n lines are uniformly spaced. The £ lines ahead and
2

%xf behind the blade have geometric spacing to provide higher resolution close
= to the leading and trailing edge. The maximum error of @ was 0.5°.

i! The resulting grids are shown in Figs. 6 and 7, These grids were used with
tﬁ
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considerable success by Bush {9, 11] in his two-dimensional viscous
implicit code.

The most demanding example was to generate a grid for finite difference
calculations of the flow properties in a turbine cascade. The transonic
turbine blade shape was the same as used by Demuren [12]. The £=0 line
is the U-shaped upstream and periodic boundary extending from the leading
edge of the lower blade to one chord length ahead of the blade to the
leading edge of the upper blade. The periodic boundary is located at the
first and last 8 points on the line ¢ =0; between these two regions is the
upstream boundary. The downstream boundary corresponds to § =40,

The inviscid grid in Fig. 8 has 30N =constant lines. The viscous grid
has 60n = constant lines, where the first and last 20 points have geometric
distribution that allows good resolution of the boundary layer, see Fig. 9.
The requirement for the £-lines was again to be normal to the n=0 and
n= jmax boundaries. The resulting C-type grids are shown in
Figs. 8 and 9,

The versatility of the present method can be best demonstrated on the
example of grid generation in the axial-radial plane of a transonic compressor
with both rotor and stator. The grid consists of fiye different regions
(upstream of rotor, rotor, between rotor and stator, stator and downstream
of stator) that are treated separately and then joined together. 1In this
case, both line types & = constant and N = constant are controlled at the
corresponding boundaries. The angle between the £ = constant line and the
upper and lower boundary changes gradually from m/2 to the angle between
g = imax line and either the line n=0 or n= jma . The n=constant lines

X

are manipulated at the £=0 and §= inax boundaries to give smooth transition
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between two adjoining regions. The & =constant lines have geometric dis-
tribution near the leading and trailing edges., There are altogether
98 £~lines and 17 n-lines. The resulting coordinate system is shown in

Fig. 10.

BOGG- Input Details

El BOGG requires two data files for input. One contains the coordinates
: of the grid boundary, the other switches and factors required during the
calculation procedure,

The input files have the following format:
4ii X-Y coordinate file
i X,Y Values on the lower surface - format [2X,(8El4.7)]

X,Y values on the upper surface

X,Y¥ Values on the left surface
X,¥Y Values on the right surface
Setup file
Line 1: Number of N lines, number of { lines - format (2X,2I5)
Line 2: Number of forcing function correction iterations, number
of SLOR iterations - format (2X,2I5)

Line 3: Damping factors A and B - format (2X,2£10.6)

e Line 4: Over-relaxation factors applied along £ lines and n lines -
format (2X,2£10.6)
¢ Line 5: Minimum angle deviation for convergence (RAD) - format

(2X,£10.6)

PR WY T

Line 6: Intersection angle options on lower, upprer, left and right

[}

. boundaries ISTART, IEND, IANG - Format (2X,3I5)

where ISTART and IEND are the positions of the start and

s Eh s AR dn de s o,
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end of the angle option and

IANG = 0 denotes intersection angle not forced

IANG = 1 denotes grid line orthogonal to boundary
IANG = 2 denotes angular deviation from orthogonality
specified.

If IANG equals 2, the angqular deviation (RAD) is then
input - format (2X,(8El4.7)].

BOGG Output Details

The program generates an X-Y coordinate file of grid intersection
locations. At each § = constant line (moving from § . to § ), the X
min max
coordinates are output for n==nmin to n==nmax [format(2x(8El4.7))], followed

by the Y coordinates in the same order.

Geometry Interpolation Codes

A series of computer codes has been written as an interface between

Rolls-Royce turbine geometric description and standard GTL usage [13].

A pre=-processor reads a Rolls~Rovce proconsul file of blade coordinates

and generates blade profile coordinates in a fofm compatible with standard

GTL usage. Two more codes interpolate this data, using a Rolls-Royce supplied
spline interpolation routine, on to user specified X.,cuts and interface with
&! the grid generation programs. A fourth program has been written to inter-
actively display and revise the resulting geometries ;nd grid lines.

Grid-Related Errors

h' As a test case for turbine type geometries, an inviscid calculation
e of the flow through a turbine cascade was attempted.

The grid chosen was a throughflow type grid as shown in

. i

Figure 11, This grid had 40 points in the axial direction and 20 points

T

in the tangential direction. falculations based on this grid were extremely
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disappointing especially in terms of stagnation pressure error. A contour
plot of stagnation pressure loss for this turbine cascade is shown in
Figure 2, Upstream of shock waves, any
stagnation pressure loss is to be considered a solution error. The
maximum error is about 15% near the leading edge, but a 10% error is ob-
served in the inlet region where the solution should and does have very
nearly uniform velocity.

Since this type of stagnation pressure error is known to be common
to most time marching algorithms, considerable time was devoted to
analyzing the error mechanism for Beam and Warming type codes. It was
felt that there were two distinct error mechanisms, one associated with
solid wall boundary conditions and a second one associated with the
truncation error of the scheme. It was found that the stagnation pressure
errors upstream of the blade rows correlated well with the second mechanism
and were not due to contamination of the solution by boundary condition
errors,

In order to understand the truncation error of the steady state

finite difference solutions, it is necessary to examine the strong con-

servation law form of the equations being solved whic¢h are the two

dimensional, transformed, Euler equation:

U +E.+F_ =0 2
& £ n (20)
S | - -1
Uu=J e E = (&xE + EyF)J
ou - -1
ov F = (an + nyF)J (21)
CE
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E = pu ) F=(ov )
pu2+P puv (22)
ouv pv2+P
Ph u ph v
L o 7 L o p;
g7l axy -x ; g=1/3"t (23)
&n g ¢
Ex = JYn &y = 3%, (24)
= X = J
Nx g Ny X

The values of the metric gquantities (J-l, Ex’ £y, nx, ny) are evaluated
numerically using the grid node coordinates., The steady state finite

difference form of equation (20) becomes:
TirLk -fj‘l"‘ + Tidel ~ T3kl =0 (25a)
2A¢ 24N

or in operator notation

SAE + AT =0 (25B)

In physical space variables, the continuity equation becomes:

mmjtl,k (Y3541, k41 " ¥Y4+1,k=1 _ (Pw) sk Wye1, kel " ¥4-1,k-1
AE an X3 T An
Wy er a1 k1 TY3-1 k) . Cw, -1 ¥ye1,5%-17¥5-1,k-1) (262)
An AE An Ag
T T o T S Rl T U LA I T L T I T i e T S
}.' AE An AE An
e
o s (OV) 5 a1 B5a1, k1~ %41, k41 _ (OV) 5 o1 %541, k=1 " %4-1,k-1) -5
N an Ag An Ag
lf: as illustrated in figures 13 and 14.
@
N
[
-
L
u
b R A L . N .4




————— T T Y T T T T T TR T W ” T Ry YOS W v UTw e o w T W w Rt E R S S A o
R A N - . o . . : 1

61

In operator notation we have

(P 5y Syeyguy = Py 6y g + (Pu)y ) Suy ey ) €Y

_ (26B)
8k T P SR P 8% T P 8%y = 0
This flux balance has the correct cell face area associated with the appro-

priate flux terms, but the flux across any face is approximated as the

value at the face mid-node - (pu)j §, y. for example. This flux

+1 k¥5+1"’
balance is common to all schemes using the strong conservation law form and

an order central differencing.
One estimate of the error in this flux balance can be obtained if one

estimates the same flux balance on a grid twice as fine as the present grid,

[

as illustrated in Figure 15, The new flux sum will be:

E,. 1, -E, 1 F 1-F, 1
5k =5k ekt dske3
— + =0 (27)
Ag An
We will estimate the term, Ej+%,k’ as:
- £ £
B, 1, = [33’5+F-1]
*7 j+ =k

(28)

_1 g - ]
=2 ((Ej+l,k+Ej,k)(rskyj+l+6k1j) (Fj+l,k+Fj,k)(6kxj+l+6kxj))

If we subtract equation (26B) from equation (28) we get a vector error
estimate of:
€= (kaj)(GjEk) + (Gjyk)(skgj)
+
(ijk)(Gij) + (5kxj)(6ij) (29)
Note that € is a vector, not a scalar quantity. Figure 16 shows a contour

plot of €,, error for energy equation, for the turbine cascade. The corres-

4

pondence between this error parameter and the stagnation pressure error shown

in Figure 12 is encouraging.
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An unexpected result on this analysis is that one term in equation
(29) is zero for sheared grids like those shown in Figurel?7 . For this
grid, all y running coordinate lines are parallel, andt&3j=(h This fact
suggests that a sheared grid might reduce the stagnation pressure error and

Figure 18 demonstrates that indeed it does.

. Conclusions

The status of the grid generation effort is at present very open-ended.
r‘ The grid error analysis shows that the scheme truncation error can be made
E{; as small as desired when the grid spacing is chosen small. In addition,

one possible interpretation of the error analysis is that sheared grids

will be adequate even for turbine type geometries. Considerable effort is
now being devoted to determining if blunt leading and trailing edges and

thin shear layers can be satisfactorily analyzed with these grids. Until
these sheared grids can be shown to be inadequate, most computations will

be done with the sheared grids rather than the BOGG grids. The BOGG grids

do offer good leading edge resolution, but they do not solve the problem

of sheared grid lines, see Figure 1l trailing edge region, 1In addition the
far-field structure of these grids also appears to be a source for stagnation
pressure errors, .

Analysis of the present Beam and Warming type algorithmic use of the

strong conservation law forms shows that the present algorithm flux balance

is not very accurate. A primary goal for future code development is to

L. improve this flux balance. Three possible methods to improve the flux balance
are: one, introduce fourth order accurate finite difference forms on the
steady state solution evaluation; second, introduce an improved, specialized

flux balance like the error analysis in the steady state solution evaluation;
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and third, introduce a combined finite difference - finite element formulation
to provide the most accurate solutions. Each of these schemes will be

investigated to determine their possible application.
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Abstract

In recent years, much progress has been made in
solving fluid dynamical problems using finite dif-
ference methods., Solving inviscid compressible
Problems in two and three dimensions has become al-
most routine with many suitable methods, explicit
or implicit, available. The problem of compressible,
viscous flows in complicated geometries remains,
however, a major challenge. Here the fine mesh
spacing in the boundary layer region makes the ex-
plicit methods with their simple boundary conditions,
impractical. ECxisting implicit methods can make use
of large time steps, but require costly inversions
of large biock-tridiagonal matrices. A method re-
cently developed by MacCormack eliminates this dis-
advantage by introducing a predictor-corrector scheme
requiring the inversion of only block bi-diagonal
matrices, It is the aim of present work to extend
this method to allow solution of viscous, compres-
sible problems in general coordinates for arbitrary
two-dimensional geometries.

Introduction

In recent years, much progress has been made in
solving fluid dynamical oroblems using finite
difference methods. Solving inviscid compressible
problems in two and three dimensions has become al-
most routine with many suitable methods, explicit
or implicit, available. The problem of compressible,
visccus flows in complex geometries remains, how-
ever, a major challenge,

The fine mesh spacing required in viscous
regions makes the explicit methods with their
simple boundary conditions, such as the MacCormack
explicit scheme (1,2) impractical. The existing
implicit methods, such as Beam and Warming (3] or
Pulliam and Steger (4], make the use of large time
steps, corresponding to Courant numbers of 0(102},
possible, but require costly inversions of large
block-tridiagoral matrices. A method recently
davelored by MacCormack {5) eliminates this disad-
vantage by introducing a predictor-corrector scheme
requiring the inversion of only block bi-diagonal
matrices. The resulting difference equations are
either upper or lower block bi-diagonal equations
that can be solved easily in one sweep. Unfor-
tunately, this method was demonstrated only for the
simple case of flat plate shock-boundary layer
interaction. It is the aim of ;resent work to ex-
pand this simple implicit method to allow solution
of viscous, compressible problems for general two-
dimensional gecmetries.

The present method uses as 1ts £:
explicit predictor-corrector finite
method of (1], afcroximating

4 d ,
flow aquations =c seccernd crier actur
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and time, Then <he second step is used to remove
the stability restriction of the first step by
transforming the ecuations of the first step into
an implicit form. The resulting matrices are block
bi~diagonal and can be easily solved. The Jacobian
matrices of the governing flow equations are ex-
pressed in a convenient diagonalized form, making
any matrix inversion unnecessary. The method was
tested on a number of numerical examples, including
incompressible and compressible Couette flow and a

supersonic diffuser with shock-boundary layer
interaction,

Development of Algorithm

The two-dimensional compressible Navier-Stokes
equations can be written in the conservation law

form

where

2
4+
U= Pu Fa pu Gx

pv suv + Txy
T
e (e:-. c;‘)u‘- Txyv kaXJ
\
pv
ouv  + Txy
G= 2
i v: o+ O
p v \
T
+ 0 v+ T u=-%k=
te*%y xy 5Y

with 2

o = (v-1) (e ~3au’evd)]

- 2 u—

(3u *ov . du
O =P~ \\3x By] ax

y Jdefining nondimensional variables

v
y' o= 3

: y L X
= Xt =X
2 ) B

o
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vaticn (1) can be axrressed in nondimensional
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The primes will be dropped later on f£or convenience.
The vectors U, F and G then becore:

(Q' } [ ptu’
!D'u'! o'ur? . o'x
U=j P =
plvl Dlulvl + T' '
xy
e ' N SN L
Le (et+0;()u H:xyv k Pr Re (Y-1) ox’'
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B 2 o
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Tx TP T Re (7 T %yT) T % Re, 3w
]
. __u du' | 3v'
Tw’ mo[W'+h'

Ar (3w’ 3v'] u' v’
G =p ~ e T YT "2 R FuT
Y Re [ax dy Reo dy

The equation of state for perfect gas becomes:
p'm(r=lle -3 o' (wd + vid))
t 2

It is also interesting to note that:

1]
M-M'-il-,-

T's%' ;oat= /T

In most of practical cases it is necessary %o
cransform the Cartesian ccordinates X,y into some
more ganeral coordinates §(x,y), n(x,y). The strong
conservation law form of (1) can be maintained as
shown, for example, by Vinokur (6]. Equat:on (1)
can be then written as

%g + %g + %% = Q (2)

where
x * SENT G = (Fn +an /3
J is the transformation Jacobian

1 - -

J-x——-_—x—-y—";x". -;_'1x 3]
£ " %q¥g vt

The metrics £ , £ , etc., are easily formed using
the relations

[P SR

CBlae Tt SNEn e uae AR

The method »f numerical integratzicn of eguat:
(2) has been adopted from MacCormack [5], where
is explained in detail. The resulting integration
scheme will be therefore presented without dectailed
development. Equation (2) is integratad Ly :hg.
following implicit predictor-corrzcCtdr set of finite
difference equations:

2n
k4

+ AN + An \
An 4 Fl;l A Gi 4l
Au.'j = <At Y3 + 3n
A A |A]n] L -Ae A*laln)\sam—l n
L=t =3F AN J' i, 1.3
L'}x'wl - an +O'Gn+l
i3 i3 i3 |
1
Corrector: }
[, an+l - anel)
— A F] A G, .|
AGM - At i, i,j |
i,3 Ag An )
- an+] -4 +1] ey
i a7Ief™ gl 4520k
L + At A E 1[:+At in i3 = i3
An+l 1 (an + 6n+ . 56n+ﬂ
) 2 tl,] i,3 1,3 D,

where ]RI, |§| are matrices with gositive gigen~
yalues, related to the Jacobians A = (3#/3U) and

B = (3G/3U), (4*/4E) and (A¥/An) are one-sided for-
ward differences and (A~/A&) and (A7/4n) are one-
sided backward differences.

The Jacobians 3 and B are related %o the
Jacobians A = 3F/3U and B = 3G/3U by

v ar
A= AE BE,

~

[{
B = Anx + any )

and are given in, for example, Steger [7]-

A=
L) i ] £ L] o
I ]-
' : ' |
-uU; ‘5x3°‘§ Us-(B—l)ExUSEyu-BExv 5 BE, ‘
1] L] 1
1] 1 *
vUr+ £ 8a1-3€ ue v U= (B-DIE vy 36 '
t . )
Ay E Ayl E A3 E (B+l)Us)‘ o
where
a’ a2
Ay ® uema-x) -l Ayt -eu,:u* T MR

-

22
and A, = ‘SUC.'V + (? + ‘l]ey .




nere :-%(uz*vz) , 3=(y-1), a=+7(p/0), £, = 98/Ex,
3, = (3§/3y) and U, U, are the zcntravariant
velocities

U = un_+ vn
nT %k ¥

where M= In/3Ix and ny: 3n/3v. The Cacobian ma%trix
~
B is obtained by substituting U., %, iy
n R >

x' ny

by Uﬂ'

The integration scheme fS) can be much simpli-
fied by dxagonalxzxng A and 8. oOnce the eigen-
ralues of a and B are known, it is possible to
axpress A and B in the form

A A A=-]

A S":A\A SE

8 = 5'1 ¢
5 4 .

"

where lA and are Jdiagonal matrices consisting of

".3
the ei 1 A, ! vee A 3,
igenvalues of A, \A,l’ A'4,Aand B,A\S'l,
... A ., respectively. The vectors 3. and §_ are
B,4 S n

constructed using the aigenvectors of R and §,
respectively, as columns.

Warming et al (8] found the eigenvalues and
eigenvectors of the nonconservative system corres-
gonding to (1)

W+ 30 . 30
52-0-,‘\3;‘-4- -9730

They give the eigenvector matrix T such that if
F=x,X + x.8, then

The matrix T is:

rl 0 L. 0
v2a 72a
K, =K
1 1 2 2
° % T & Y /kl * Kk,
Ts= 3
o -K, Y PP AR P
v2 (2]
21 Qa
7 —p—
LO > VT R

The Jacobians A and B <f zhe conservative systen
(1) are obzained from zhe ncncanservactive A and 3
by

- -1
R=ulan §=4 "3y (9)

where

CAPPP P S S S ATy s
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1 0 o 9
bu ol 0 2,
i
M= iv 0 o 2
O -
3 )

If now P =klA‘+k23 for the :sonservat.ve
-~ -1
<hen B =11 “PM gives the crcrer
version of ? from zonservative

Both P and ? have the same 2:genvalies, 350

p=uTAMT !

Equation (lOL can be used o Iind the matrices ..

AA' S_ and :n \B' g{l in (8). One can, for

example, set the arbitrary k, and k2 to k, =5,

~ X 1 x
k2 =;y and obtain

=Za+&B=A4
? -.xA 's_{ =

The comgarison of (13} and (&) lesads 20

= MT (11)

wy

AL )

§, can be found by carrying out the multiplication
igd (11), The result is

S, =
(1 H o : 0 : 2 ]
: H ayv 2 : arve '
: 14 : 2N - Y l
u e - : o(%*—x‘//Z 3‘5-—5\//2 {
: €1 : €1 : Y |
: _ |
: : e fo 3 |
v 0% : 9(1*—1-’/.2 DY A
) p la c,. a :lj X
. L i
. . t
. oug ~-vg ) U, TN ¢
a ———-——-‘: X o[:+—‘.~-; Sv2 J;i-_l..-i-“,’v/Z!
‘ N N a ¢, =
. (12}

where ¢, = /E: + 52 . §gl is found simply from

A=l -1 =1
S, =T M
12 g
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28 3u 3v -3
L-= = 2 : = —
a B a . a a
-ui_ +vg : 5 -3
v X v H o)
.cl . ch Jcl
u. 3 g . !
B _E . x_3u -
a Cl . Cl a Cl a s
ov?2 : D72 : o2 pay 2
U : & : 13 :
0.8+__E_ :__x__ig} : _[_y_+3v] :
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~
And finally A_ is formed from eigenvalues of A.
These are given by, for axample, Steger [7]:

[ v, b 2 o |
0 . 9 0
AA = 0 o] U£+ac1 0 (14)
o) 0 Q Ui—acl

1

gn, AB and §6- are similar; they can be found by

replacing E y Ey and UE by ﬂ B ny and U . Following

closely the MacCormack approach in [51, the matrices
{A! and ‘B‘ in (5) are formed by replacing the
matrices A and AB by positively valued diagonal

matrices DA and DB such that

D, = [AAI A1

og = IABI +ABI (15)
where
L2y {p2, 2] 158
AA pd lix * Ty J 2 At
2V 2 2 1 4n
AB-Dn[nx+ny]‘2At
and
A ¢ 2u) Xy
v = max [ ‘ TRe ' Pr_Re ]
o o oo

Formula (15) for O and O_, assumes that viscous
effects are modeleé in the .nplxyxt saz' of the
scheme by addition of the zerms i_, which incluce
vigcosity through t=he :cefficient” ), "The elements
of D, D_ are non-negative; negative values of the
elements of D_, D, mean that :tne CFL condition is

90
4.

An fA"?: Ain

1) let U, .= =3t —id, ————41' at evary point
i,3 A€ in )
inside the calculaticnal Jcrmain.
2} solve
A

LI +

ATl A ~
‘[x—.‘.t"———."-l— I -At = ,.U'”l =, for
i ag An 3774, i,
G: ; . This is done in two steps by deroting

+A
gu; 5 [I - At é_AL—L] 50 n+)1 , resulting in two
’ ’

vector equations.

PR
_ A lAl Se o apn
a) (I At AT ]Sui,j Aui,j

+1amy = .
b) [x - At A—-—‘—B—!—]s Lo st

An i,3

A closer look at step 2a reveals that it is an
upper bi-diagonal 2quation that can be solved by
sweeping in decrzasing 3 dirsction for a constant
1. Substituting (8) in step 2a and some simp.e
manipulacion leads :=o

A A=l Aa
[I+At Sg. D, S, }60. .

i,3

A A%
j+At[A|. 6”1+1J

an
=39, i+1,3

Denoting w = Aa;‘j + AtIAl .80

i+l,j U1.+1 3j
some matrix multiplication gives finally

§6° = 3.1+ a0t 57 an
i, 3 g A &
Equation (17) can be very easily solved since
3. and §-1 are known and the inversion of the
dlagonal” matrix (1+AtD.) is trivial, After all
50" . inside the calculational domain are detemined
thé’Jstep 2b can be carried out in the same manner,
The corrector steps are analogous to the predictor
steps. The major prcblem in the above described
scheme is Exndan the proper boundary values of

the expression At/ B| 00 for i =i . i=1

and j = j and j = 1, because these are not known
at the time when the sweep begins. They will be
dealt with in the next section.

Boundary Conditions

Since the present method uses upwind spatial
derivatives, a starting value of the expression
Aclﬁlou or At]A[SU is needed for both the predictor
and corrector. For simplicity, we will devote these
expressions SW; they represent the implicit part of
the boundary conditions. The explicit boundary con-
ditions, needed for =2valuation of the expression
Auf, are obtainable more 2asily. At the boundary,
equation (16) will take the following form:

- met and there is no need %o use the implicit portion oy 2=l ,ne An
I+4es D S, U = AU .+ W (18)
- of the scheme (5). The integration scheme (5) can ( Ei j AL j £ ) i,3 i,3
now be carried out 1n zhe following steps: ! '
4
A.'.;"‘l ' W) e L] a " ‘é. PP (AP I . W VR W G g . W . - LAPRLIPO. SPW Y ‘AL&LL_"LL.VLQ




In order to maintain the unconditional
stability of scheme (5), the value of W would have
to be evaluated implicitly. An improper treatment
of the implicit part of the boundary conditions,
such as lagging in time, will limit the stability
region of (5) to CFL members of 0 (l). The present
' work developed scme ad hoc procedures for deter-
mining the value of W that gave satisfactory re-
sults for the test cases used. A more vigorous
treatment of the boundary conditions for the pre-
sent method will be required to develop their
generally valid formulation.

Following boundary conditions were implemented:

a) Supersonic inflow boundary: At these
bvoundaries, all the eigenvalues of A are positive,
so that all characteristics point from cutside into
the computational domain. All the elements of U
are therefore specified at this boundary. For
time~independent boundary conditions one obtains:
o, pu, Pv, & = constant; W = O.

b} Supersonic outflow boundary: Here all
the characteristics have the direction form inside
to outside., All the values of U must be therefore
extrapolated from the ccmputational domain, The
explicit part of the boundary conditions does not
represent any problems; the elements of U are in
this case linearly extrapolated from the
computational domain:

~ -~
o, =26, _ -u _, (19)
max max max
The same extrapolation was applied to &wW.
6w = 28t (|A]60) -0, (20)
i -1 i -2
max max

Since, at the time of evaluation of oW, the ex-
pressions on the left-hand side of (20) are not
known, W would have to be calculated by using an
implicit scheme at the three points i i

¢ 1

max’ ‘max~}’

i -2
max™2

In the present work the CFL number in the
x-direction was always less than 1, so that purely
explicit boundary conditions were used, giving (19)
and W = O,

c) 3Solid wall boundary: The wall was placed
between the first and second grid point and re-
flective boundary conditions were used, The ex-

plicit boundary conditions for an adiabatic wall are
then:

= -oU

pu, i,2

i,l v

-ov

i,1 i,2

[} = -0 e - e

i1 i,2 i,1 i,2

5w can be obtained
the predictor value of

The corractor value of
using the same principle from
At!B|8U at the point j = 2

W™ . Reaed's |80 (21)
1%2
where
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1 0 0

o -1 0 0
R= 1 -1 o,

0 o

There still remains the problem of finding the
predictor value of W, The present work used the
following procedure:

W™t - R A:(lsléﬁ)jﬂsz = 6w

while switching the direction of the predictor
sweep after every completed predictor-corrector
sequence. This is equivalent to lagging the
boundary value of change of flux one half time step.

d) Periodic boundaries: The periodic
boundaries were again placed between the first and
second grid point, and W was lagged one half step.
Placing the periodic boundaries at, for example,
i=1+{(1/2) and i = im -(1/2) resulted in the
following scheme: For pkggic:or sweeping in
direction of increasing-i,

Dn+l = ph ; uﬁzi = ul
1,3 i -1,3 " 1,3 i -1,3
n+l n n+ n
v = v, . s e o= e, . and
1.3 lmax-l'J 13 L nax .3
+1 n
W TC = 8w, .
1,3 lmax 1,3
and for corrector,
on+1 - Dn+1 “n+1 un+1
. . ’ [
Lmax,j 2,3 imax 3 2,3
n+l n+l , e?*l = en+% and
vy =V, lmax . 2.3
max, j +3 max.l
6wn+1 - 6wn+1
i . 2,3 °
max, j
Here, the grid lines are assumed to be orthogonal

at these boundaries.

No attempt was made at this time to create
nonreflective implicit boundary conditions based on
the characteristics of (5), Note alsc that the
outflow boundary conditions are only explicit., The
present method is therefore limited to supersonic in~
flow and supersonic outflow boundaries with CFL number
0(1) in the outflow direction or periodic inflow/
outflow.

Zxamples

The present numerical method was tested on two
examples, the Couette flow and a supersonic
diffuser,

A) Couette flow: The physical demain consisted
of stationary lcwer wall at j =1, uniformly moving
upper wall at j =16 and two periodic boundaries at
i=]1 + (1/2) and { =10 + (1/2). The computaticnal
domain had 16 grid lines in the N~-direction and 11
grid lines in the j-direction. Several cases were
run for Reynolds numbers based on the distance be-
tween the upper and lower wall tetween 6.2 and




2.3 x 103 at Mach numbers petween 0.09 and 0.75.
Courant numkers in nN-direction of up to 1000 did
not cause any problems, but the Courant aumber in
f-direction was limited to 0(l) by the gericdic
boundary conditions. Cepending on the Reynolds
numcer and the Jourant number, the sta2ady state
solution was reached after 10 to 300 iteraticns.
The results for Uup = 0,75 are shown in Fig. 1.

B) Supersonic 4iffuser: The supersonic
diffuser flow calculation was gerformed to test
the present method on a more demanding case for
which analytical and experimental data are
available, The diffuser had the shape shown in
Fig. 2. It has a straight lower wall and upper
wall with a compression corner to produce a shock
of required strength. The orthogonal grid shown
in Fig. 2 was numerically generated. There were
S1 grid lines in n-direction and 51 grid lines in
E£-direction, with 20 grid lines in the viscous
layer region close to the wall., Upstream, the Mach
number was 2, and the velocity distribution corres-
ponded to Re_ = 1.25 x 104, The pressure ratio
across the shock was P,/, = 1.2; it was chosen such
«hat direct =zomparison with experimental results
{3] was possible. The boundary layer was issumed
to be laminar. At the geflection point the Reynolds
number was Re_ = 3 x 107; the gressure incrzase due
to the shock Caused boundary laver segaration.

The
resulting pressure profiles after 600 iterations at
CFL number Cy = 160 agree rather well with ex-
perimental data from Hakkinen 2t al [9] (see

Fig. 4).. The pressures at the walls display
slightly higher values than the experiment due to
the blockage effect of the boundary laver. The S¢
coefficient in Fig. 4 shows again good agreement
with analytical data by Bush {10] and experimental
data which were performed on a flat plate,

Some problems were experienced with the
boundary conditions in n-direction, Best results
were obtained by switching sweep directions after
one complete time step. The corrector value of 5w
was reflected off the opposite wall. Although the
method has natural dissipation, the steep gradient
at the shock boundary layer interaction region
caused sometimes stability problems. A weak fourth
order explicit damping term was added to the
right-handed side term, eliminating the instapility.

Conclusion

The present method offers substantial potential
for use in complex compressible viscous flow cal-
culations. Using the same Courant numbers, it is
faster and simpler than existing implicit methods
because it does not require inversion of block tri-
diagonal matrices. At the present time its use at
higher Courant numbers is limited by the choice of
boundary conditions to supersonic flows, Its
general usefulness for transonic flows depends on
future research in the area of boundary conditions.

The :implicit part of the boundary conditions
deserves special attention as well as the formulation
of non-reflective boundary conditions for the inflow
and outflow boundaries.

The ; = constant boundaries (upstream and
downstream) did not represent a problem in this
case, because *“he CFL number was here O(1l),
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IMPLICIT MacCORMACK SCHEME

Summasz

An extremely interesting implicit scheme for viscous flow calculations
was suggested by MacCormack. This scheme was generalized for arbitrary two-
dimensional geometries and examined for its use in turbomachinery type
geometries. The scheme was found to be potentially useful for supersonic
inlet analysis but generally not useful for turbomachinery analysis. A
copy of an AIAA paper presented at the 20th Aerospace Sciences meeting is

enclosed as part of this report.




e T e sy Ty e R e e v T .

97

COMPUTATIONAL PLAN

As a program management aid, a three-year computational plan has
been created and is outlined in figures (1-3). Figure (1) attempts to
outline logical interrelationships between development work on the two
and three dimensional viscous codes, specific test examples to be cal-
culated, specific problem areas to be examined and general project ob-
jectives. It can be seen that the two-dimensional viscous code is pro-
jected to be used both as a development and test tcol for the three-
dimensional code and to study important flow problems such as base
pressure prediction and film cooling heat transfer prediction. Figures
2 and 3 are projected time lines for the code development and checkout.
The test examples chosen are expected to be modified through interaction

with the sponsors and by events.
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TWO DIMENSIONAL VISCOUS CODE STATUS
Summary

The status of the present two~dimensional viscous code development
is illustrated through a series of calculations for the RRT7 cascade
at design incidence. The first inviscid calculation illustrates that
the problems of global mass and momentum conservation associated with
time marching codes have been solved and that adequate blunt leading edge
resolution can be obtained with sheared grid systems. Analysis of such
solutions has shown that the artificial viscosity terms used to control
algorithm stability are themselves an error source when grid spacings
change rapidly. Improved damping term formulations are the next major
focus for two-dimensional code development. A second set of inviscid
and laminar viscous solutions shows the extreme sensitivity of turbine
cascade calculations to trailing edge geometry. Since our intent is not
to develop an inviscid flow code, inviscid trailing edge model and in-
viscid boundary condition improvements will be directed by Dr. Norton
of R-R.

Inviscid Flow Calculations

A set of test calculations for the RR T7 cascade geometry were con-
ducted in order to evaluate general predictive capabilities of the
present code and grid systems. The test calculations were all conducted
at design incidence. The first grid system chosen is shown in figure 1
and uses 69 axial points and 30 tangential points. A rather blunt trailing
edge with coarse grid resolution was used. Figure 2 shows the comparison
between predicted and measured surface Mach numbers. Reasonable agreement

exists on the pressure surface, Leading edge resolution appears adegquate
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but rapid changes near the leading edge appear to be caused by the
artificial damping algorithm. Present damping algorithms evolved for
grid systems of rather uniform density. When used with the rapidly
varying grids of figure 1, this algorithm is inadequate. A stagnation
pressure error contour plot for this solution is shown in figure 3.
Important pressure errors are generated at the trailing edge, but the
solution is generally adequate in this respect. Figures 4 and 5 are
plots of the mass averaged flow angle and mass flow rate against axial
distance. Conservation of these guantities is excellent.

In order to improve leading and trailing edge resolution a new
grid, shown in fiqure 6, was constructed. This grid has 89 axial points
and 50 tangential points. A "“sharp" trailing was modeled. The surface
Mach number comparison for this grid is shown in figure 7 and can be
seen to be very poor. Suction surface velocities and blade lift are
very low as is the suction surface trailing edge velocity. This result
is quite surprising unless one realizes that the blade lift (circulation)
is controlled by the trailing edge model, and the "sharp" trailing edge
does not produce a good flow model.

Viscous Flow Calculation .

In order to test the importance of trailing edge modeling a laminar,
viscous, design incidence solution was computed. The grid, shown in
figure 8, has 100 axial points and 50 tangential points. Since the object
was to test trailing edge models, no attempt to generate a good viscous
grid was made. Instead, the same leading and trailing edge axial spacing

was retained, and 10 points added near each blade surface. Computed surface
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pressures are shown in figure 9 and can be seen to compare much more
favorably with the measured pressures than do the second inviscid test

case, The same type of leading edge pressure oscillations can also be

seen in this solution.

Implication for Viscous Code Development

The proper conclusion to be drawn from these comparisons is not
that viscous effects are important for the T7 at design incidence, but
rather that trailing edge modeling is important for inviscid calculations.
Since our objective is not really to develop inviscid code predictions,
trailing edge models and boundary condition procedures for inviscid
calculation will be directed by Dr. Norton of RR. Since boundary layer
calculations and turbulence modeling are also being followed by
Dr. Norton, the possible use of these codes for inviscid predictions
will be adequately explored.

These examples demonstrated persistent leading edge oscillations
which are felt to be not really due to blunt leading edges but an
artifact of the artificial damping algorithm when used with rapidly
varying grid mesh spacings. This problem and the generaticon of more
realistic viscous grids are to be the next areas of .work for the two-

dimensional code.
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T7 TEST CASE, INVISCID CALCULATION, SHARP TRAILING EDGE
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T7 TEST CASE, VISCOUS & GRID
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FIRST ANNUAL RRI/ONR REPORT

EXPERIMENTAL EFFORTS

[t 92
o
g
aa's

ﬂ; Introduction

- —_—

.

:q This report summarizes the experimental activities during the
s first year of the Investigations of Flow Fields and Heat Transfer in
e

& Modern Gas Turbines. Activities during this period consisted primarily
of the conceptual and preliminary mechanical design of the Blowdown
Turbine Facility.

The goals of the program are summarized in Figure l. The

emphasis is on developing the capability to simultaneously measure the
heat transfer and aerodynamics of a full size film cooled high pressure
turbine under rigorously simulated conditions. Thus, all the
nondimensional force and energy ratios (Reynolds No., Mach No., Rossby
No., Prandtl No., Eckert No.) will be kept the same as for the full
scale turbine. This must be accomplished, however, at a cost level,
both for construction and operation, consistent with a University
operation.
Scaling

The principal scaling is one of temperature. The temperature
ratios, main flow gas to metal and coolant flow to metal, are kept the
same as for the full scale turbine but the absolute temperature levels
are reduced. 1In this case, the metal temperature is scaled to room
temperature. The resultant gas temperatures are 478°K for the main flow
and 212°K for the coolant.

Another variable in the scaling is that of gas composition. Air is
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a possible choice but has a ratio of specific heats, v = 1.38 at 478°K
instead of the vy = 1.28 typical of high temperature turbines. By mixing
light and heavy gases we can adjust vy, both to simulate the full scale and
to investigate the importance of vy matching for aerodynamics & heat
transfer testing. Figure 2 lists the properties of several
argon-refrigerant mixtures while Table 3 lists the inlet conditions
required for similarity with the full scale turbine. Note that not only
does the gas mixtures match v, but the Reynolds No. is matched at a much
lower pressure, 4-5 atm., implying considerable savings in tanks, piping,
etc. as well as in the amount of test gas required. Of the refrigerants
investigated, R-12 (Freon-12) is by far the least expensive ($1/1b) and
therefore the gas of choice for the main flow. The coolant temperature is
low enough to condense R-12 at the max pressure considered, 10 atm, so
that R-14 would be used for the coolant. Other advantages of the gas
mixture stem from the 25% reduction in the speed of sound compared to that
in air at the same temperature. Thusg, for a given tip Mach No., the
rotational speed is only 3/4 as great-reducing stresses by a factor of 2.
The blade passing frequency is similarly reduced, decreasing the frequency
response required of the fixed frame instrumentation for a particular
spatial resolution in the rotor frame.

Figure 4 illustrates the Blowdown Turbine scaling. Note that the
temperature ratios (the Eckert No.) establishes the gas temperatures;
the Reynolds number establishes the inlet pressure; the ratio of
specific heats establishes the gas composition; and the tip Mach No.

sets the rotational speed. The Prandtl No. cannot be independently set
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but fortuitously is essentially exactly correct. The reduced absolute
pressure levels and the high molecular weight of the mixture combine to
reduce the turbine power produced by a factor of approximately 20.

At this point, the turbine size must be selected. Basically, as
large a turbine as possible is desirable from the point of view of
instrumentation. In fact, even the largest production high pressure
turbines typically have blade spans of only 6 cm. The facility size scales
more closely with mass flow than blade length, however. The mass flow
required for a turbine from a 50,000 1lb thrust engine was beyond the
resources of this program and a 0.5 m (20 inch) diameter turbine size was
chosen. This was consistent with the resources in hand, comparable in size
to the NASA High Pressure facility, and has a span 2/3 of that of the
largest turbines.

Steady state turbine performance measurement is not a strong
driver since the goals of this program are primarily concerned with time
regsolved measurements. Therefore, the idea of building the facility
around an existing conventionally tested turbine had considerable
attractiveness. It reduced the program costs and, even more

importantly, provides a baseline performance against which to compare

the blowdown test results. The turbine selected is of Rolls Royce

t

Limited design and manufacturer. It represents a high work design of

EARVR ‘m-"‘j—f o .‘441 x"
K AR INL LA IS 1> . ANAN
. l.m"- * LY + .- PO fate L '

radrl st rh g

the mid to late 1970's and has a pressure ratio of approximately 4 to 1.
The full scale column in Figure 4 refers to this turbine.
For purposes of future research capabilities the facility was sized

for twice full scale Reynolds No. testing (10 atmos. laboratory inlet total
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pressure) and a laboratory inlet temperature of 530°K (500°F), to permit
carbon steel construction and the use of elastomer seals. This results in
a facility capable of simulating full scale conditions up to 40 atmos. at
2500°K (4500°R) as shown in Figure 5.

FPacility Configquration

Now that the physical scaling is established, the facility
configuration must be selected. Many candidate configurations were
examined with four in some detail. These are summarized in Figure 6.
All of these designs are based on transient testing. This is both to
reduce the costs associated with the experiment and to take
advantage of many of the transient heat transfer and fluid dynamic
testing techniques developed over the last 25 years. Also, since the
predominant source of unsteadiness in turbines is rotor-stator
interactions, a test time on the order of 0.1 to 1.0 sec. (i.e. 600 to
6000 blade passings) should be sufficient for most studies. This has
proved true in several transient cascade, turbine, and compressor
facilities at MIT and around the world.

One configuration studied used room temperature aigh
pressure gas storage (100 to 200 atmos.) to feed a flow heater and then
the turbine. A large flywheel would absorb the turbine power (Figure 5,
#1). This has the advantage of maintaining constant inlet pressure
during the test time with fast acting pressure regulators. The
principal disadvantage is that the high pressure storage precludes the
use of a heavy gas mixture (the heavy gases condense at high pressure).

The second configuration is a variation on the first in which
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ot the high pressure storage is replaced by a room pressure expulsion
bladder contained in a heated shell. Since, the turbine inlet pressure
is constant at room pressure, Freon c¢an be used. This scheme

has the disadvantage that full Reynolds number similarly cannot be
achieved. Also, the technology required for a 100 m3 500°K balloon is
risky.

The third configuration considered was the original concept which
motivated this project. In this scheme the turbine is directly coupled
to a compressor whose inlet is the turbine's outlet. Thus, the turbine
and compressor turn at the same mechanical speed and share the same
flowpath. Since a choked turbine produces power proportional to the tip
Mach No. squared and a centrifugal compressor does work as the square of
the tip Mach No., the turbine-compressor pair are matched over a
considerable range and operate at constant cnrrected speed without the
need of a control system. The corrected weight flow is constant so long
as any orifice in the flow path remains choked. If we now place the
turbine-compressor test section between two tanks, the upstream supply
tank filled with the gas mixture at appropriate conditions and the
downstream dump tank evacuated to full vacuum, the facility is complete
with the addition of a valve or diaphragm between the supply tank and
test section.

The design of such a blowdown tunnel was carried out in some
detail. A compressor was chosen in this design over a flywheel for two
reasons. The first is that the compressor can maintain a closer match

in corrected speed compared to the flywheel since with the f£lywheel, the

-
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turbine mechanical speed must always increase (if only a small amount),
while with the compressor, the turbine speed can slow to match the drop
in inlet temperature that is inherent to a blowdown from a fixed volume
tank. Thus, the flywheel may be appropriate for a constant inlet
condition scheme such as Figure 5, Nos. 1 & 2, but an energy absorber is
really required for a blowdown. The compressor design proved to be a
problem, however. The problem with the centrifugal compressor is that
the very high work output of the transonic turbine requires a very large
diameter compressor wheel which in itself acts as a large flywheel. As
the compressor diameter passed 1 meter in the design, it was clear that
a safe mechanical design of the rotating system would be very difficult.
(Note that the aerodynamic design is not so difficult since the
compressor efficiency does not effect its power absorption, only the
pressure rise. The pressure rise does, however, determine the volume of
the dump tank required. The principle aerodynamic design

consideration for the compressor is that the weight flow vs. speed
characteristic match that of the turbine).

Various compressor designs were then attempted including a
supersonic axial compressor and the adaptation of a muitistage aircraft
engine high compressor. These schemes did not seem to offer much in
reducing either the mechanical complexity or the technical risk of the
project.

Another configuration investigated replaced the compressor with
an eddy current brake. An eddy brake consists of a moving conductor

(metal disk or drum) in an imposed magnetic field. This induces
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secondary currents (eddy currents) in the conductor which opposes the
applied field, thus generating a braking force. The power is
dissipated as heat in the conductor. The eddy brake is attractive
because the braking torque is proportional to the square of the
rotational speed. Thus, an eddy brake coupled to the turbine will, as
the compressor, match the turbine characteristic without the need of a
control system. The eddy brake offered the advantage of a high power
density design-simplifying packaging and rig layout. Unlike a
mechanical friction brake, the eddy brake has no moving parts other
than the conductor and thus relatively few mechanical design problems.
N Due to the above potential advantages of the eddy current brake
and also due to the investigators expertise in compressor design and

ignorance of eddy current brakes, the eddy brake configuration was

chosen for the Blowdown Turbine.

Given the selected configuration, and a 0.2 to 0.4 sec. run time
goal, various facility sizes were simulated. Figure 8 illustrates that
for a typical eddy brake configuration facility, the corrected speed
and turbine pressure ratio remain constant to 1% over 0.4 seconds.

Subsystem Detail

Main Valve

A principle component of this facility is the main valve which
separates the supply tank from the test section. The valve must seal
vacuum against 10 atmospheres pressure at 500°K (S500°F), open fully in
50 ms, and provide a smooth disturbance free inflow to the turbine

(Figure 9). The explosively ruptured diaphragm that was used in the MIT
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Blowdown Compressor Facility could not be used here because of the
higher pressure and temperature. The design chosen was the pilot
operated annular plug valve illustrated in Figure 1l0. The valve is
constructed of steel and is therefore fairly massive (slider weight =
100 Kg). It is designed to operate in thermal equilibrium and is
thus oil heated. Valve dynamics.depend upon a 100 mm diameter pilot
pneumatic piston for the initial motion, with the major part of the
opening force coming from the pressure difference between the outside
surface of the glider and the inside damping chamber which is initially
evacuated. As the slider moves, the damping chamber fills through the
orifice flow path and then acts as the damper, slowing the slider to a
stop. To aid in the design, the valve dynamics were simulated on a
computer. Typical predictions from the simulation are presented in
Figqure ll. The valve is at its designated open position (i.e. valve flow
area is greater than any downstream flow area) after less than 50 ms.
from initial motion point.
Eddy Brake

The design of the eddy brake has proven to be a considerable
technical challenge. An eddy brake torque vs. speed characteristic is
shown in Figure 12. The Blowdown Turbine muét operate on the linear
section of the curve if the power absorbed is to be proportional to the
square of the shaft speed. As the shaft speed increases, the magnitude
of the eddy currents increase until at wp, the eddy field is equal
to the applied field. The torque will now decrease with increasing

speed as the eddy field excludes the applied field flux lines.
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The challenge is to design a brake with a critical speed, wg,
above the turbine operating range but which is still capable of
absorbing the requisite power in a reasonable mechanical package. To
simplify the problem, the brake was designed to heat sink the power
produced (1.2 MW for 1 sec.) in the moving conductor. This introduced
an additional design problem since at a given mechanical speed, 4o
decreases with increasing conductor thickness. Thus the conductor must
be thick to absorb the power but it must be thin because of the
electrodynamics. The solution adopted was to use a very high
resistivity, high hot strength material in a drum configuration with 10
"horgeshoe" electromagnets arranged around the periphery. The design is
summarized in Figure 13. Current from a D.C. source is supplied to the
magnets as the valve is open (the rotor is to already have been brought
to operating speed by a small D.C. motor).

Tanks and Auxiliary Systems

The supply and dqump tanks are of carbon steel construction. The
supply tank volume is approximately 14 m3 (365 cu. ft.) and dump tank
volume is 20 m3 (550 cu. ft.). The supply tank is double walled so that
hot oil can be circulated to heat the tank to the desired operating point.
The valve is similarly heated. A silicon rubber insert and a water jacket
on the upstream flange keep the test section at room temperature. A
commercial 80 KW electric oil system heats and circulates the oil. The
facility is illustrated in Figure 14.

Other auxiliary systems include a vacuum pump for evacuating the

tunnel and a gas mixture system required to supply the mixture. The
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facility is designed with a 2 to 3 hour recycle time.

Data Acquisition

The data acquisition and analysis system for this facility must

be capable of acquiring data with an information bandwidth of at least
40 kHz from 20 to 100 sensors for at least 0.5 seconds. This implies a
prodigious data rate and volume. No commercial system was capable of
meeting these requirements at a reasonable price. The preliminary
design of a custom system was performed and its detailed design and
construction contracted out. The system is shown schematically in
Figure 15. It consists of up to 100 separate channels each capable of
digitizing at 200,000 samples/sec. There are also up to 96 lower speed
channels multiplexed onto 8 high speed channels. The digital output
from these channels is transmitted 200 ft. at an average data rate of
256 Mb/sec. to a 32 M byte semiconductor memory, thus permitting ur to
200,000 data samples on each of 100 channels. The data acquisitien
system is under the control of a local microcomputer. After the test is
completed, the data is read from the memory into a Perkin-Elmer 3242
computer for analysis. System specifications are summarized in Figure
16. Initially, 25 high speed and 48 low speed channels have been

ordered.
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Instrumentation

Flowfield

One of the principle advantages of the scaled blowdown scheme is
that the environment is quite benign when compared with a full scale
turbine. It is in many ways comparable with that of a conventional
compressor and thus most of the standard compressor instrumentation
techniques can be directly applied to the blowdown turbine. The basic
high frequency technology is the semiconductor diaphragm pressure
o transducer such as those manufactured by Kulite, Entran, or Endevco.
;;‘ These are incorporated into various probe configurations with net

frequency response in the 10 to 20 kHz range (Figure 17).
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Heat Flux
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.

Heat frequency heat flux measurements on the rotor blades are

,

the first goal of this program. Several alternate technigues have been
considered as summarized in Figure 18. The most promising technique
involves the measurement of the temperature difference across a well

calibrated insulator as shown in Figure 19. Considerable effort will

be spent in developing these techniques.

e
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Conclusions

L o
A

A Blowdown Turbine Facility has been designed to be capable of

accurate simulation of the fluid physics of high pressure film cooled
turbines. Detailed design and constructiocn of this device will proceed

along with development of the required instrumentation techniques

s
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- during the next year.
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FIGUPE 1

BLOWDOWN TURBINE PRIMARY GOALS

FULL FLUID PHYSICS SIMULATION - Re, M, Pr, Ro, A—TI

TIME RESOLVED MEASUREMENTS HEAT TRANSFER

AERODYNAMICS

SIMULTANEOUS HT & AERO

COOLING AIR TRANSPORT

LOW CONSTRUCTION COSTS

LOW OPERATING COSTS - UMIVERSITY SCALE
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FIGURE 3

ARGON-REGRIGERANT MIXTURES: REYNOLDS SIMILARITY

TEST PRESSURES AND SATURATION TEMPERATURES '

b SOOI ARSI S WA e 9 EnCAeD

MIXTURE CONDITIONS AT REYNOLDS SIMILARITY

- XR P5/Po Py Pr Tsat

- (psia) (psia) (°F)
R-12  .2554 .2229 64.3 16.4 -17
S

R-13Bl .2690 .2265 65.3 17.6 -65
R-14  .2936 .2637 76.1 22.3 -187
N R-22  .3384 .2294 66.2 22.4 -24
R-115 .1469 .2484 71.7 10.5 -50
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FIGURE 4

MIT BLOWDOWN TURBINE SCALING

FULL SCALE  MIT BLOWDOYN
FLUID AIR AR - R12
, RATIO SPECIFIC HEATS 1.27 1.27
%| METAL/GAS TEMP RATIO T\,/T. .63 .63
| MEAN METAL TEMP, T, 1118°K 300°K
INLET TOTAL TEMP, T, 1780°K 478°K
COOLING AIR TEMP 799°K 212°K
AIRFOIL COOLING AIR FLOW 12,5% 12.,5%
TRUE NGV CHORD 8.0cm 5.9%M
REYNOLDS NUMBER 2,7x100 2.7x10°
INLET TOTAL PRESSURE 289 ps1A 64 PsIA
PRANDTL NUMBER '.752 755
TEST TIME CONT, .2 SEC
POWER PRODUCED 24 Mw 1.3 mw
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_ FIGURE 6

CANDIDATE FACILITY CONFIGURATIGNS 1

I. HIGH PRESSURE STORAGE VITH FLOW

HEATER AND FLYWHEEL

IT. CONSTANT INLET PRESSURE WITH - >

~ EXPULSION BLADDER AND
FLYWHEEL _ ! |

P PP

- 111, CLOSED BLOWDOHN AND COMPRESSOR | _

Bt Bt ot B M B

lﬂ

1V, CLOSED BLOWDOWN AND EDDY CURRENT BRAKE
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FIGURE 7

POWER BALANCE

TURBINE CONNECTED TO EDDY CURRENT BRAKE

TURBINE

EDDY

2 2
POWER PRODUCED FVMTIP ~ N

BRAKE

2 2
POWER ABSORBEDz~rBO u ~ N2

CONCLUSIONS

BRAKE & TURBINE CHARACTERISTICS MATCH

NO CONTROL SYSTEM REGUIRED

MAGNETIC FIELD STRENGTH FINE TUNES BRAKE
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FIGURE 9

MAIN FLOW VALVE

FACILITY REQUIREMENTS

NONRESTRICTING - OPEN 2 FT., DIAMETER

FAST ACTING - 5IMS FuLL OPEN

HIGH TEMPERATURE OPERATION - uP TO S5Q0°F

v
ys o A
SV AP

- EXCELLENT SEALING - VvAcuuM Tc 150 psia

iy
C

DESIGN IMPLEMENTATION

5

T
T

e ANNULAR PLUG DESIGN CHOSEN

e PILOT OPERATED - GAS FLOW PROVIDES OWN FORCE

e CARBON STEEL CONSTRUCTION - OIL HEATED

e ALL SEALS USE "0" RINGS
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= FIGURE 13

EDDY CURRENT BRAKE - DESIGN SUMMARY

Operating Point w = 662 rad/sec

p = 1l.5x 106 watts
Drum Material INCO 718, o = 0.801 x 10° (9-m)~!
Geometry Drum Radius, r = .16 cm

Drum Thickness, A= .635 cm

Total Air Gap Height, 2g = 1.27 cm

Number of Poles, N = 20

T e ——
AR ¢ St .
Lo . . .
. s . .

Gap to Pitch Ratio %? = 0.25 (normal)
Resisting Factor (fL = 0.906
- r
5 Max. Torgue 2
Reynold's Number RMo = 0.7854(v=1g)
Max. Torgue Speed wy = 870 rad/sec {(normal)
Power at Max. 6
Torque PO = 2,045 x 10" watts
Static Field By = 0.781 T
Amp. Turns per
Pole I = 7896 amps
Excitation Coils
Time Constant To (sec) 0.010 0.020 0.025
Total Power P (watts) 47,000 23,500 18,800
"Copper" crcss-section A (cmz) 1.60 3.21 4.01
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FIGURE 16

DATA ACQUISITION SYSTEM COMPARISON

RESOLUTION/CH
MAX SAMPLING RATE
APERTURE UNCERTAINTY
LINEARITY

ABSOLUTE ACCURACY
SAMPLING MODE
GAIN/OFFSET CONTROL
CLOCK GENERATOR
CLOCK RESOLUTION
SAMPLE SETUP

MANUAL READOUT
TOTAL SAMPLES/CH

________________

CUSTOM SYSTEM

12 BiITS
210 KHz
1NN ps

N,9247,
0,17

SIMULTANEOUS

FRONT PANEL

4 speep:
INVERSE
COMPUTER

COMPUTER
409,000

21 Hz-200 KHz

DISPLAY

BEST COMMERC SYSTEM

10 Bi1TS
1070 w4z
1n] ps

n,2%

1.0%
SIMULTANEOUS
PCB

3 speep; 20 Hz-20MHz

GEOMETRIC
SWITCHES

OSCILLOSCOPE
1,000
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FIGLPE 17

PRESSURE-VELOCITY INSTRUMENTATION

SENSOR TECHNOLOGY - SILICON DIAPHRAGM, STRAIN GAUGE

WALL STATIC PRESSURE - CASING, NGV'S

TRAVERSING PROBE - FLOW TOTAL % STATIC PRESSURE, 2 FLOW

ANGLES
- STATIONARY FRAME TRAVERSE
- ROTATING FRAME TRAVERSE (BEHIND ROTOR)

TECHNIQUES ADAPTABLE FROM COMPRESSOR RESEARCH
(SIMILAR TEMPERATURES & PRESSURES)
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FIGURE 18
HEAT TRANSFER INSTRUMENTATION (NGV'S AND ROTOR)

ALTERNATE TECHNIQUES AVAILABLE

A, BLADE CALORIMETER APPROACH

o USE BLADE AS CALORIMETER

° MEASURE TEMPERATURE WITH THIN FILM THERMOCOUPLES

o USE 3-D TRANSIENT HEAT TRANSFER CODE TO REDUCE DATA
ADVANTAGES

® MINIMUM FLOW DISTRUPTION

o INSTRUMENT INDUCED TEMPERATURE ERROR LOW

® SINGLE INSTRUMENTATION MEASURES HIGH & LOW FREQUENCEIES
DISADVANTAGES

° REQUIRES 3-D TRANSIENT HEAT TRANSFER CODE
° LARGE CAPACITY DATA ACQUISITION SYSTEM NECESSARY
] CALIBRATION RELATIVELY DIFFICULT

B. DISCREATE CALORIMETER APPROACH

e DISCREATE CALORIMETERS INSERTED IN BLADES
e CALORIMETERS (1 MM DIAMETER) THERMALLY ISOLATED FROM BLADE
ADVANTAGES

. SIMPLIFIED DATA REDUCTION
o EASILY CALIBRATED
DISADVANTAGES

° DISTURBS BLADE BOUNDARY LAYERS
o INTRODUCES DOWNSTREAM ERRORS
o DIFFICULT TO MEASURE HIGH & LOW FREQUENCIES WITH SAME UNIT
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FIGUPE 18

HEAT TRANSFER INSTRUMENTATION (cONT'D)

o THIN FILM HEAT FLUX GAUGES APPROACH

® MULTI LAYER FLUX GAUGES FABRICATED ON BLADE SURFACE
® DIFFERENTIAL TEMP MEASUREMENT ACROSS INSULATOR
ADVANTAGES

6 MINIMUM FLOW DISRUPTION

o INSTRUMENT INDUCED ERROR LOW
e DIRECT READOUT OF HEAT FLUX
DISADVANTAGES

® MUST BE VERY THIN FOR HIGH FREQUENCY RESPONSE (1 TO 5um)
@ DIFFICULT TO FABRICATE
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FIGUPE 19
THIN FILM HEAT FLUX GAUGE
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DESIGN - MEASURE TEMPERATURE DIFFERENCE ACROSS INSULATOR
- SENSORS ARE TEMP. SENSITIVE RESISTORS
CONSTRAINTS - FREQ. RESPONSE LIMITS INSULATOR THICKNESS
- SELF HEATING SETS SENSOR RESISTANCE
TRADEOFFS - SENSITIVITY FOR FREQ. RESPONSE
- RESISTANCE FOR TEMP. COEF,
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